Accelerating Dynamic Graph Analytics on GPUs

Mo Sha[†], Yuchen Li[‡], Bingsheng He[†], Kian-Lee Tan[†]

[†]School of Computing, National University of Singapore [‡]School of Information Systems, Singapore Management University

> Presenter: Mo Sha Aug 29th, 2018

NUS National University of Singapore

Outline

- Introduction
- GPMA Dynamic Graph Processing
- GPMA+ Optimization
- Evaluation
- Conclusion

GPU Accelerated Graph Analytics

[1] https://gunrock.github.io[2] https://developer.nvidia.com/nvgraph[3] https://github.com/pymedusa/Medusa

Introduction

GPU Accelerated Graph Analytics

- Existing GPU Accelerated Graph Analytics focus on conducting graph primitives on static graphs.
- CSR(-like) graph format is widely used due to GPU computational architecture for better parallelism scheduling.

Spar	se Ma	atrix			Row	poin	ter ar	ray			_							
10	0	0	0	-2	0	2	4	7	11	14								
3	9	0	0	0	Column indices array													
0	7	8	7	0	0	4	0	1	1	2	3	0	2	3	4	1	3	4
3	0	8	7	5	Values array													
0	8	0	9	13	10	-2	3	9	7	8	7	3	8	7	5	8	9	13

Introduction

GPU Accelerated Graph Analytics

- Existing GPU Accelerated Graph Analytics focus on conducting graph primitives on static graphs.
- CSR(-like) graph format is widely used due to GPU computational architecture for better parallelism scheduling.
- For evolving graphs, an entire rebuilding is required for each single update, which significantly limits the performance on evolving graphs.

Introduction

Dynamic Graph Format on GPUs requires ...

- To support edge insertion, deletion, and edge value modification.
- To be compatible with existing GPU-based graph algorithms.
- An acceptable trade-off between update efficiency and the overhead introduced.

NUS National University of Singapore

Outline

- Introduction
- GPMA Dynamic Graph Processing
- GPMA+ Optimization
- Evaluation
- Conclusion

Introduce Packed Memory Array into GPU Graph Analytics

- Sort elements in a partially continuous fashion
- Leave gaps on each segment with a bounded ratio
- Self-balancing binary tree structure
- The amortized insertion complexity of PMA is proved to be O(log² N) in the worst case and O(log N) in the average case.

1				1	1		1				1					 							
^	1		/	0 ¹ 1 1	1 I I I I I I I I I I I I I I I I I I I		171		22	1	I				יירו		` ∧ ∡ '	77			F 1 1	10	
1			5 1 2	X ' I K		161	1/1		レノイ・			1 / / 1	יאי				34		1411	46 1	51 .	6/ -	
4									23			Z ' !	20					57					

	Leaf	Level 1	Level 2	Level 3
segment size	4	8	16	32
density lower bound ρ	0.08	0.19	0.29	0.40
density upper bound τ	0.92	0.88	0.84	0.80
$\min \# \text{ of entries}$	1	2	4	8
$\max \# \text{ of entries}$	3	6	12	24

GPMA Dynamic Graph Processing

	Leaf	Level 1	Level 2	Level 3
segment size	4	8	16	32
density lower bound ρ	0.08	0.19	0.29	0.40
density upper bound τ	0.92	0.88	0.84	0.80
$\min \# \text{ of entries}$	1	2	4	8
$\max \# \text{ of entries}$	3	6	12	24

GPMA Dynamic Graph Processing

	Leaf	Level 1	Level 2	Level 3
segment size	4	8	16	32
density lower bound ρ	0.08	0.19	0.29	0.40
density upper bound τ	0.92	0.88	0.84	0.80
$\min \# \text{ of entries}$	1	2	4	8
$\max \# \text{ of entries}$	3	6	12	24

GPMA Dynamic Graph Processing

	Leaf	Level 1	Level 2	Level 3
segment size	4	8	16	32
density lower bound ρ	0.08	0.19	0.29	0.40
density upper bound τ	0.92	0.88	0.84	0.80
$\min \# \text{ of entries}$	1	2	4	8
$\max \# \text{ of entries}$	3	6	12	24

GPMA Dynamic Graph Processing

	Leaf	Level 1	Level 2	Level 3
segment size	4	8	16	32
density lower bound ρ	0.08	0.19	0.29	0.40
density upper bound τ	0.92	0.88	0.84	0.80
$\min \# \text{ of entries}$	1	2	4	8
$\max \# \text{ of entries}$	3	6	12	24

GPMA Dynamic Graph Processing

	Leaf	Level 1	Level 2	Level 3
segment size	4	8	16	32
density lower bound ρ	0.08	0.19	0.29	0.40
density upper bound τ	0.92	0.88	0.84	0.80
$\min \# \text{ of entries}$	1	2	4	8
$\max \# \text{ of entries}$	3	6	12	24

NUS National University of Singapore

Outline

- Introduction
- GPMA Dynamic Graph Processing
- GPMA+ Optimization
- Evaluation
- Conclusion

Insertion Keys: | 4 9 35 48

Insertion Keys:

Leaf Segments:

26

Υ

Ν

Ν

Ν

Successful Flag:

NUS National University of Singapore

Outline

- Introduction
- GPMA Dynamic Graph Processing
- GPMA+ Optimization
- Evaluation
- Conclusion

Evaluation

Datasets

	V	E
Reddit	2.61M	34.4M
Pokec	I.6M	30.6M
Graph500	IM	200M
Random	IM	200M

Specification

- CPU-based 4-way Intel(R) Xeon(R) CPU E7-4820 v3 40-cores, 1.90GHz 128GB memory
- GPU-based Intel(R) Core i7-5820k
 6-cores, 3.30GHz
 64GB memory Nvidia GeForce Titan X 12GB

	Container	BFS	Connect Component	PageRank					
	AdjLists	Stond							
Approaches	PMA	Standard Single Thread Algorithms							
	Stinger	Stinger built-in Parallel Algorithms							
GPU	cuSparseCSR								
Approaches	GPMA+	ט. Merrill et a	ai. J. Soman et al.	CUSF Spiriv					

Baselines

Insertion

32

NUS National University of Singapore

Outline

- Introduction
- GPMA Dynamic Graph Processing
- GPMA+ Optimization
- Evaluation
- Conclusion

Conclusion

- I. We introduce a framework for GPU dynamic graph analytics and propose, the first of its kind, a GPU dynamic graph storage scheme to pave the way for real-time dynamic graph analytics on GPUs.
- II. We devise two GPU-oriented parallel algorithms: GPMA and GPMA+, to support efficient updates against high-speed graph streams.
- III. We conduct extensive experiments to show the performance superiority of GPMA and GPMA+.

Open Source: https://github.com/desert0616/gpma_bfs_demo

