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ABSTRACT
Cache efficiency is an important factor in the performance of graph

processing due to the irregular memory access patterns caused by

the sparse nature of graphs. To increase the cache hit rate, prior

studies proposed a variety of preprocessing approaches based on

the reordering, which permutes the vertexes’ labels to improve the

locality of graph structures. However, the locality enhancement

of existing reordering approaches does not bring much perfor-

mance benefit in depth-first traversal, which is widely adopted

in a majority of graph processing applications. Furthermore, the

state-of-the-art reordering approach suffers from an obvious over-

head on preprocessing which will greatly limit the application of

their approach. In this paper, we propose SeqDFS, a depth-first

graph traversal method that optimizes the cache efficiency by ad-

justing the order of vertexes visited and can be further extended to

dynamic scenarios. We conduct extensive experiments on 16 real-

world datasets and 3 representative depth-first graph applications,

of which the results show that our proposal achieves a significant

speed-up on both directed and undirected graphs.
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1 INTRODUCTION
Graph processing is one of themost effective tools tomodel complex

problems in a structured manner and mining corresponding un-

derlying knowledge. Generally, graph processing is data-intensive,
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indicating that the memory access efficiency is a key factor of the

overall performance. However, during graph processing, the locality

of the memory access patterns tends to be low. This means that, the

data adjacently accessed is usually not physically closely located in

the memory, which significantly degrades the cache hit rate. Prior

studies [10] point out that the cache miss latency takes a large part

of the execution time in graph processing. Hence, improving the

locality of the memory access patterns during graph processing

will effectively improve the computational efficiency.

For most cases, graph processing is conducted by visiting ver-

texes under some certain patterns dependent on the applications.

Among them, depth-first traversal is an important access pattern,

which is a fundamental building block that is adopted inmany graph

applications, e.g., bridge detection [20], topological sorting [19], sub-

graph isomorphisim[7], reachability query [17, 23, 25, 28], strongly

connected component detection [9, 16, 18], cycle detection [21],

and biconnected component detection [11], etc.

For this reason, there is a kind of preprocessing approach based

on the vertex reordering [2, 3, 10, 13, 27], which relabels graph ver-

texes based on different assumptions. For example, HubCluster [3]

makes hubs, i.e., vertexes with a higher degree, to be close with

each other in terms of their labels to increase the reuse probability

of the cache page; Gorder [10] calculates a permutation based on

the Gscore, which maximizes the number of edges of which the

label difference between in-degree and out-degree does not exceed

a predefined window distance, in order to reduce cache replacement

when traversing along edges.

However, the permutations of the existing reordering approaches

are generated by their optimization targets which increase the lo-

cality of vertex labels based on the proximity of the graph topology,

rather than based on memory access behaviors. When graph pro-

cessing is conducted in a depth-first manner, as the depth increases,

vertex visits quickly cross different neighboring areas of the graph

structure, and hence, the optimization assumptions of existing ap-

proaches may not lead to an effective improvement of the cache hit

rate in such scenarios. Furthermore, on one hand, preprocessing-

based reordering approaches are time-consuming. On the other

hand, it is difficult to maintain the reordering permutations when

the graph is modified.

This raises a research gap, i.e., how to propose an effective ap-

proach to optimize the label proximity of the vertexes visited during

the depth-first traversal in graph processing, which can be also effec-

tively maintained in dynamic graphs. To mitigate this, we propose

SeqDFS, a depth-first traversal method based on the Depth-First

Search (DFS) sequence, which leads a higher cache hit rate in graph

processing. We first generate the DFS sequence, according to the
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pop-up order of the DFS traversal tree, and reorder the vertexes of

the graph based on the sequence. Therefore, such a DFS sequence

can be regarded as a chain partitioning solution of the DFS tree,

and each tree chain indicates a continuous subinterval of the DFS

sequence. Based on this, edges of the graph are divided into tree

edges and non-tree edges, and the traversal along the tree edges

guarantees that the labels of the vertexes visited are continuous.

In SeqDFS, when traversing the graph in a DFS manner, we deter-

mine the order of vertex traversal according to this DFS sequence,

thereby improving the locality of the memory access and achiev-

ing a boosted cache hit rate. For dynamic graphs, we propose an

efficient algorithm to maintain the DFS sequence, so that we can

still effectively determine subsequent vertexes for DFS graph tra-

versal based on this, in order to optimize the cache efficiency of

graph processing. To the best of our knowledge, SeqDFS is the first

to investigate how to directly take into consideration the vertex

visit order that improves the cache efficiency of depth-first graph

processing.

The contributions of this paper are summarized as follows:

• We propose to reorder the graph by DFS traversal. Compared

with the state-of-the-art method[10], SeqDFS could be orders

of magnitude faster in graph order construction. In addition,

our method could be adapted to dynamic graphs, to the best

of our knowledge, SeqDFS is the only method that could

maintain the graph order in dynamic graphs.

• We propose a new DFS traversal method, SeqDFS, to be

conducted along the vertex ordering sequence. SeqDFS opti-

mizes the vertex visit order such that we could reduce the

cache misses as well as branch prediction misses. SeqDFS

is readily applicable and easy to implement, which can be

widely adopted by the depth-first graph applications on both

directed and undirected graphs.

• We evaluate our proposed SeqDFS on 16 large real-world

datasets and 3 graph algorithms. The experimental evalu-

ation results show that SeqDFS can outperform the state-

of-the-art graph vertex reordering approaches among all

evaluated datasets. For DFS traversal, SeqDFS could get a

speedup of 1.51x. For strongly connected component detec-

tion, the speedup is 1.78x. For bridge detection, the speedup

is 2.53x.

The rest of this paper is organized as follows. Section 2 presents

the preliminaries. Section 3 reviews the related studies. Section 4

elaborates on the methodology of SeqDFS. We evaluted the pro-

posed SeqDFS in Section 5. Section 6 concludes the paper.

2 PRELIMINARIES
In this paper, given a directed graph 𝐺 = (𝑉 , 𝐸), 𝑉 is the vertex

set and 𝐸 is the edge set. The number of vertexes in 𝐺 is denoted

as 𝑛 = |𝑉 | and the number of edges in 𝐺 is denoted as 𝑚 = |𝐸 |.
Given a vertex 𝑢, we denote the direct predecessor (resp. successor)

of 𝑢 as 𝑁𝑖𝑛 (𝑢) (resp. 𝑁𝑜𝑢𝑡 (𝑢)). Then the in-degree and out-degree

of vertex 𝑢 are denoted as 𝑑𝑖𝑛 (𝑢)=|𝑁𝑖𝑛 (𝑢) | and 𝑑𝑜𝑢𝑡 (𝑢)=|𝑁𝑜𝑢𝑡 (𝑢) |.
For a given vertex 𝑢, the child vertexes connected by tree edges are

denoted as 𝐶𝑡 (𝑢), the other vertexes connected by non-tree edges

are denoted as 𝐶𝑛𝑡 (𝑢). For an edge from vertex 𝑢 to vertex 𝑣 , we

denote it as (𝑢, 𝑣).

Definition 2.1 (DFS). Given a graph𝐺 , DFS traverses𝐺 in a partic-

ular order by picking an unvisited vertex 𝑣 from the out-neighbors

of the most recently visited vertex 𝑢 to search, and backtracks to

the vertex from where it comes, when 𝑢 has explored all possible

ways to search further [24].

Definition 2.2 (DFS Tree). Given a graph 𝐺 , a DFS-Tree of 𝐺

denoted by 𝑇𝐺 , is an ordered spanning tree constructed by the

process of DFS.[24]

Definition 2.3 (DFS Sequence). Given a graph 𝐺 , a DFS sequence

of 𝐺 is generated by DFS traversal of the graph. Every vertex will

be pushed into sequence when it is visited for the first time and

labelled with the time when the vertex is popped out of the DFS

stack.

3 RELATEDWORK
As discussed, cache miss is the bottleneck that limits the perfor-

mance of DFS. Hence, how to decrease the cache miss number is a

main concern in this line of research. Some studies [2, 3, 10, 13, 27]

propose to minimize the cache miss ratio by graph ordering.

For instance, Zhang et al. propose Frequency-Based Cluster-

ing [27]. Their approach is based on the observation that certain

vertexes are much more likely to be accessed than others in power-

law distributed graphs. Such vertexes are usually attached with

a large number of edges. Thus, they reorganize the graph order

according to the out-degrees so that the vertexes with large out-

degrees will be clustered together. As Frequency-Based Clustering

computes the graph ordering only based on the out-degrees, it

achieves high efficiency in graph order construction, however, it

may not bring large performance improvement for graph applica-

tions. Balaji et al. present Hub Clustering [3] which is a variation

of Frequency-Based Clustering. Hub Clustering can achieve lower

reordering overheads than Frequency-Based Clustering, but it leads

to a reduced speed-up compared with Frequency-Based Clustering.

Lakhotia et al. [13] propose the Block Reordering approach. They

first present a new metric Profit that quantifies cache data reuse.
Then they conduct a joint optimization that maximizes both cache

data reuse and cache line utilization. Their experiments show that

they can achieve up to 2.3x speed-up over the original graph or-

der. However, Block Reordering is designed for clustering sibling

vertexes. They are not well optimized for DFS-based applications.

Arai et al. present Rabbit [2] which is a just-in-time paralleled

graph ordering approach. They focus on the locality derived from

hierarchical community structures in real-world graphs. Their ap-

proach is based on an observation that a community has dense

inner-edges; thus, a vertex in a community is more likely to be

visited from the other vertexes in the same community. There-

fore, they try to improve the locality by co-locating vertexes in

each community. By paralleling the graph ordering procedure, Rab-

bit could achieve end-to-end performance improvement. However,

their approach tends to be effective only in graphs with community

structures.

Wei et al. present Gorder [10], a general approach that tries to

improve graph memory access by graph ordering. They try to find

the optimal permutation among all vertexes in a given graph by

keeping vertexes that are frequently accessed together locally. To

be specific, they define a score function to measure the closeness
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Figure 1: (a) is an example graph𝐺 . (b) shows the correspond-
ing DFS tree rooted at vertex 0 and the DFS sequence.

of two vertexes, as higher scores are awarded if two vertexes are

neighbors or siblings. Then, they maximize the sum of the scores

for the graph vertexes in a sliding window such that the vertexes

in the local area are more likely to be accessed together. In the

best case, Gorder can achieve a speed-up of 2x. However, Gorder

suffers from large overheads in graph order construction for some

real-world graphs, e.g., hundreds or even thousands of seconds are

needed [10] which is unacceptable for some applications.

Although the graph ordering approach can achieve a significant

performance improvement, it has some disadvantages. As discussed

in Section 1, it ignores the importance of the actual vertex visit order,

as well as will suffer from performance degradation in dynamic

graphs. Different from the previous studies, we reorder the graph

to achieve a better vertex visit order. Most of the performance

improvement comes from the optimization of the vertex visit order

that is much more stable in dynamic graphs compared with existing

work. In a nutshell, SeqDFS can achieve better performance in

dynamic graphs even without maintaining the graph order, which

indicates that SeqDFS is effective in both static and dynamic graphs.

4 SEQDFS: DEPTH-FIRST GRAPH TRAVERSAL
ON DFS SEQUENCE

In this section, we present the sequence construction method and

our proposed DFS algorithm. Based on these, we first show how our

SeqDFS method is applied to trees, and then we demonstrate how

SeqDFS is readily adapted to general graphs. Finally, we discuss

how SeqDFS works on dynamic graphs.

4.1 SeqDFS on Trees
As discussed, the vertex sequence is constructed corresponding

to the DFS tree. We show an example in Figure 1. Figure 1(a) is

an example graph 𝐺 that we will use throughout the paper. Fig-

ure 1(b) shows the DFS tree and the corresponding DFS sequence

constructed from vertex 0. Vertexes are recorded when they are

visited, i.e., pushed in, and the subscripts denote the timestamps

when they are popped out. Therefore, the subscript of a vertex 𝑢

refers to the index (in the DFS sequence) of the vertex 𝑣 that should

be visited after this vertex 𝑢 is popped out. For example, vertex

2’s subscript is 7, which means that the vertex in the 7th position

(which is vertex 9) should be investigated after vertex 2 is popped

out. At the end of the sequence, we add a flag vertex 𝑁 (in position

9) to define the end of the sequence. Thus, vertexes 0, 1, and 4 will

not visit any vertexes after they are popped out. We note that the

non-tree edges are not covered by the DFS sequence, i.e., the se-

quence is a representation of the DFS tree constructed from vertex

0.

As the sequence maintains vertexes in the DFS visit order, it

is more cache-friendly to the DFS procedure. Consider the DFS

sequence starting at vertex 0, the next vertex is vertex 1 that is a

child vertex of vertex 0. At the same time, vertex 3 is a child vertex

of vertex 1, and vertex 8 is a child vertex of vertex 3. For all the

vertexes in this sequence, 5 out of 9 vertexes are the child vertex of

the vertex before it. Hence, if we conduct DFS along the sequence,

the DFS procedure will be quite efficient as it acquires a higher data

locality. However, the “next vertex” rule does not always hold. For

example, although vertex 6 is in the next position of vertex 5, it is

not a child vertex of vertex 5. If we only focus on the sequence, we

couldn’t prune vertex 6 from the visit. Therefore, pop-out time is

needed.

Further, the sequence is a reflection of the DFS stack operation.

For a vertex in the sequence, its position is the time when it is

visited. The pop-out time implies the structure of the DFS tree used

to exclude the vertexes that should not be visited. For instance,

vertex 9’s pop-out time is 8, which is the position where vertex

4 is located. This means vertex 4 is the next vertex that should

be investigated after vertex 9 is popped out. However, vertex 4’s

pop-out position is larger than that of vertex 9, which indicates

that vertex 4 is not a child vertex of vertex 9. Thus, vertex 4 should

not be visited from vertex 9.

Combining the position of the vertex and the pop-out time, we

can guarantee the correctness of the traversing graphs by the gen-

erated DFS sequences.

Lemma 4.1. For vertex 𝑥 in the sequence, vertex 𝑦 is the next vertex
in the sequence. Then vertex 𝑦 is: 1) a child vertex of vertex 𝑥 or, 2)a
sibling vertex of 𝑥 or, 3) a sibling vertex of 𝑥 ’s ancestor vertexes.

Proof. As mentioned, the vertexes in the sequence are in the

DFS visit order. For vertex 𝑥 that is currently visited, if there are

unvisited child vertexes, one of them will be visited next. Thus, the

next vertex in the sequence is the child vertex. Otherwise, vertex 𝑥

will be popped out and DFS will backtrack to find the next vertex to

visit. As backtracking is triggered, the next vertex must be a sibling

vertex of 𝑥 or a sibling vertex of 𝑥 ’s ancestor vertexes. □

Lemma 4.2. Given two vertexes 𝑢 and 𝑣 , if vertex 𝑢 is in front of
vertex 𝑣 in the sequence and the pop-out position of vertex 𝑢 is larger
than (or equal to) that of vertex 𝑣 , then vertex 𝑣 is in the subtree rooted
at vertex 𝑢.

Proof. As vertex 𝑢 is in front of vertex 𝑣 in the sequence, 𝑢 is

visited earlier than 𝑣 by DFS. If the pop-out position of vertex 𝑢

is larger than (or equal to) 𝑣 ’s pop-out position, 𝑢 will be popped

out after 𝑣 is popped out. Hence, 𝑣 must be in the subtree rooted at

vertex 𝑢. □

Lemma 4.3. Given two vertexes 𝑢 and 𝑣 , if vertex 𝑣 is the next
vertex of vertex 𝑢 in the sequence and vertex 𝑢’s pop-out position is
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Algorithm 1 SeqDFS on Trees

1: next = null //next is a global variable.

2: Procedure DFS(vertex 𝑐𝑢𝑟 )
3: next = the next vertex of cur in the sequence

4: while 𝑛𝑒𝑥𝑡 .𝑝𝑜𝑝 ≤ 𝑐𝑢𝑟 .𝑝𝑜𝑝 do
5: DFS(next)

6: end while
7: EndProcedure

larger than (or equal to) vertex 𝑣 ’s pop-out position, then vertex 𝑣 is a
child vertex of vertex 𝑢.

Proof. Vertex 𝑢’s pop-out position is larger than vertex 𝑣 ’s pop-

out position, this means that vertex 𝑢 will be popped out later than

𝑣 . From Lemma 4.2, we can infer that vertex 𝑣 must in the subtree

rooted at vertex 𝑢. According to Lemma 4.1, vertex 𝑣 must be a

child vertex of vertex 𝑢. □

Lemma 4.4. Given two vertexes 𝑢 and 𝑣 , if vertex 𝑣 is the next
vertex of vertex 𝑢 in the sequence, and vertex 𝑢’s pop-out position is
smaller than that of vertex 𝑣 , then vertex 𝑣 is a sibling vertex of vertex
𝑢 or 𝑢’s ancestor vertexes.

Proof. From Lemma 4.1, we can infer that vertex 𝑣 is either a

child vertex of vertex𝑢 or a sibling vertex of vertex𝑢(or𝑢’s ancestor

vertexes). If vertex 𝑢’s pop-out position is smaller than vertex 𝑣 ’s

pop-out position, this means that vertex 𝑣 is not a child vertex

of vertex 𝑢. Thus, it must be a sibling vertex of 𝑢 or 𝑢’s ancestor

vertexes. □

We can infer from Lemma 4.3 and 4.4 that, if the current vertex’s

pop-out position is larger than(or equal to) that of the next vertex in

the sequence, we can guarantee that the next vertex is a child vertex

of the vertex visited currently. Therefore, we can directly visit the

next vertex in this scenario. Otherwise, backtracking is invoked.

We show how to conduct DFS along the sequence in Algorithm 1.

We will check whether the next sequence vertex is a child of the

currently visited vertex(line 4). If true, the next vertex will be visited;

otherwise, we will backtrack to the ancestor vertex and try to visit

the vertex 𝑛𝑒𝑥𝑡 . As the sequence is constructed in DFS visit order,

if the father vertex of 𝑛𝑒𝑥𝑡 is in the DFS stack, 𝑛𝑒𝑥𝑡 will be visited

by its father vertex (Lemma 4.5). If the father vertex is not in the

stack, meaning that the next vertex is out of the visit range, DFS

will be terminated.

Lemma 4.5. In Algorithm 1, given two vertexes 𝑢 and 𝑣 , if vertex
𝑣 is visited from vertex 𝑢 after backtracking, then vertex 𝑣 is a child
vertex of vertex 𝑢.

Proof. From Lemma 4.3, we can infer that vertex 𝑣 is not a

child vertex of its previous vertex. Hence, backtracking will be

triggered. The backtracking will be continued until the condition

in line 4 is met. As the sequence is transformed from a DFS tree,

the backtracking will find the first vertex that includes vertex 𝑣 in

its subtree. Thus, vertex 𝑢 must be the father vertex of vertex 𝑣 in

the tree. □

Example 4.6. We take Figure 2 as an example to illustrate how

SeqDFS works in the tree of Figure 1(b). The vertex 𝑛𝑒𝑥𝑡 is shown

Figure 2: The DFS stack for the DFS procedure conducted
from vertex 8.

at the top of the stack and colored in gray. Assume that we want to

conduct DFS from vertex 8. The next vertex is 2. The subscript of

vertex 2 is 7 which is smaller than that of vertex 8. Therefore, vertex

2 will be visited. Then vertex 5 is in the next position. Similarly, its

subscript is smaller than that of vertex 2. Vertex 5 is visited. Then

we will try to visit vertex 6. Its subscript is 7 which is larger than

that of vertex 5; thus, vertex 5 will be popped out of the stack. We

will backtrack to vertex 2. As 𝑛𝑒𝑥𝑡 is a global variable, it still points

to vertex 6. Vertex 2’s subscript is equal to that of vertex 6, as a

result, vertex 6 will be visited. After that, vertex 9 and 4 will be

investigated. It is similar to the aforementioned procedure and thus,

the corresponding details are omitted.

We can observe from this example that, for a DFS sequence

constructed from a tree, as there are no non-tree edges, all the

vertexes will be visited sequentially. In this scenario, SeqDFS will

sequentially access the next vertex in the sequence and the smallest

number of cache line replacement is needed. However, the sequence

here can only be used to speed up the DFS procedure based on trees,

which renders the application limited. Therefore, we extend SeqDFS

for general graphs in the next subsection.

4.2 SeqDFS on General Graphs
We demonstrate how SeqDFS functions on trees in Section 4.1.

Nevertheless, the real-world graphs are much more complicated

in that there are a large number of non-tree edges in the graph. In

this subsection, we discuss how to construct the DFS sequence on

general graphs and perform DFS on them.

4.2.1 Sequence Construction. It is generally difficult to find the

graph ordering that achieves the optimal graph processing perfor-

mance, e.g., Gorder [10] proves that it is NP-hard to obtain the

graph ordering with the highest Gscore. In this paper, we propose a

heuristic method to determine the graph ordering. As mentioned in

the previous subsection, higher data locality can be achieved when

we conduct DFS along the sequence. For a sequence constructed

from a graph, the more edges covered by the sequence, the better

performance can be achieved. Therefore, we adopt a greedy strat-

egy to construct the sequence, aiming to cover as many edges as

possible.

Lemma 4.7. Given a graph𝐺 and the corresponding DFS trees, the
number of the DFS trees is 𝑡 . Then, the number of edges covered by
the trees is 𝑛 − 𝑡 .

Lemma 4.8. Given a graph 𝐺 in which all the vertexes are in the
same weakly connected component, then the smallest number of DFS
trees needed to cover the graph is equal to the number of vertexes
whose 𝑑𝑖𝑛 (·) is zero.
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Algorithm 2 Sequence Construction

1: seqIndex = 0

2: Procedure Con_DFS(vertex cur, sequence seq)
3: set cur as visited

4: seqVertex = cur

5: seq.push_back(seqVertex)

6: seqIndex = seqIndex+1;

7: for vertex x in 𝑁𝑜𝑢𝑡 (𝑐𝑢𝑟 ) do
8: if x not visited then
9: Con_DFS(x, seq)

10: else
11: add edge x to seqVertex

12: end if
13: end for
14: seqVertex.pop = seqIndex

15: EndProcedure

16: Procedure Seq_Con(𝐺 (𝑉 , 𝐸))
17: seq = new sequence

18: for vertex x in 𝑉 do
19: if 𝑑𝑖𝑛 (𝑥) = 0 then
20: Con_DFS(x, seq)

21: end if
22: end for
23: for vertex x in 𝑉 do
24: if x not visited then
25: Con_DFS(x, seq)

26: end if
27: end for
28: EndProcedure

The proof of Lemma 4.7 and 4.8 is obvious, and thus is omitted.

We can conclude from Lemma 4.7 that, the fewer trees we use to

cover the graph, the more edges will be covered by the sequence.

Therefore, to cover more edges, we should try to use as few trees

as possible. Inspired by Lemma 4.8, we first try to construct the

sequence from the vertexes whose 𝑑𝑖𝑛 (·) is zero. For some isolated

strongly connected components (SCC) in the graph, there will be no

vertexes with a zero in-degree; thus, we will construct the sequence

from the remaining unvisited vertexes. It needs to be noted that,

conduct the process from any vertexes in the isolated SCC would

cover all the vertexes in the same SCC. After that, all the vertexes

are covered by our DFS sequence.

We show the sequence construction algorithm in Algorithm 2.

From line 18 to 22, we try to traverse the graph from vertexes

whose in-degree is zero. If all the vertexes are in a weakly connected

component, the number of DFS trees will be equal to the number

of zero in-degree vertexes. Then, we construct the sequence from

the unvisited vertexes to cover the vertexes in the isolated SCC.

The Con_DFS procedure shows how our sequence is constructed.

From line 4 to 5, we initialize a new sequence vertex and push the

vertex into the sequence. Then, we increase the sequence index

(𝑠𝑒𝑞𝐼𝑛𝑑𝑒𝑥 ) in line 6. We note that the 𝑠𝑒𝑞𝐼𝑛𝑑𝑒𝑥 is a global variable

that is initialized in line 1. After that, we check the child vertexes.

If the vertexes are not visited, we will recursively conduct DFS

along the edges (line 9). Otherwise, we will add the edge to the

0 1 3 8 2 5 6 9 49 9 8 8 7 6 7 8 9 7 10 1110 12 12

2

8

0 1 2 3 4 5 6 7 8 9 10

N

11 12

3 2 1 8 9

Figure 3: DFS sequence for graph 𝐺 with non-tree edges.

sequence vertex. (line 11). Finally, when the vertex needs to be

popped out, we record its pop-out time (line 14). For the example

graph in Figure 1(a), we show the corresponding DFS sequence in

Figure 3. In addition to the sequence, every vertex has an adjacent

list that points to the child vertexes connected by non-tree edges.

In our method, we only consider the relationship between two

neighbouring vertexes. In fact, the graph order can be further im-

proved by taking more adjacency information into consideration.

The most straightforward method is to apply Gorder’s approach.

That is, when we perform DFS to construct the sequence, we always

try to choose a child vertex that is more connected with the se-

quence vertexes in front of it. For example, in Figure 3, after vertex

2 is pushed in, we can either push vertex 5 or 6 into the sequence.

However, there is another edge (5, 2) in the graph which means

vertex 5 is better connected with vertex 2; thus, vertex 5 should

be pushed into the next position. In this example, we can also con-

sider more adjacency information, e.g. the edge connections among

vertex 8, 3 and 1. Nevertheless, the optimization will incur great

overheads. As we want to implement a lightweight graph ordering

method, the overheads are unacceptable for SeqDFS.

4.2.2 DFS traversal. As discussed, the edges in the graph fall into

two categories: 1) tree edges that are covered by the sequence and

2) non-tree edges that are kept in the adjacency list. Therefore, two

different methods can be used to traverse the graph. For a vertex

that is visited currently, when we try to visit its child vertexes,

we can either visit the tree edges first or visit the non-tree edges

first. For the method that visits non-tree edges first, we call it AF,

meaning adjacency list first. The other one is called SF, meaning

sequence first. We note that we cannot control the memory access

pattern when we visit the non-tree edges. In fact, from the view of

memory access, there are no differences between the AF method

and the classic adjacency list based DFS except that the graph is

reordered. Thus, the performance of the AF method is a reflection

of the effectiveness of our graph ordering method. Compared with

the AF method, the SF method optimizes the vertex visit order.

It always tries to visit the next memory address first. As a result,

higher data locality can be achieved if the child vertex is in the

next position. To evaluate how much performance improvement

can be achieved from the graph ordering and the vertex visit order

optimization, we discuss both methods in this subsection.

We illustrate the DFS algorithm with the SF method in Algo-

rithm 3. When we try to visit a vertex, we will first mark it as visited.

Then, we will check the next vertex in the sequence in line 4. If the

next vertex is an unvisited child vertex, we will visit it in line 6. No

matter whether the current vertex is visited or not, the vertex 𝑛𝑒𝑥𝑡

will point to the vertex in the current vertex’s pop-out position

(line 8), which is the next vertex we should try to visit. It will be
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Algorithm 3 Sequence First DFS Algorithm

1: Procedure SF(vertex 𝑐𝑢𝑟 )
2: cur.vis = true

3: next = the next vertex of 𝑐𝑢𝑟

4: while 𝑛𝑒𝑥𝑡 .𝑝𝑜𝑝 ≤ 𝑐𝑢𝑟 .𝑝𝑜𝑝 do
5: if 𝑛𝑒𝑥𝑡 .𝑣𝑖𝑠 ≠ 𝑡𝑟𝑢𝑒 then
6: 𝑆𝐹 (next)

7: end if
8: next = the vertex in 𝑛𝑒𝑥𝑡 ’s pop position

9: end while
10: for 𝑥 ∈ 𝐶𝑛𝑡 (𝑐𝑢𝑟 ) do
11: if 𝑥 .𝑣𝑖𝑠 ≠ 𝑡𝑟𝑢𝑒 then
12: 𝑆𝐹 (𝑥)
13: end if
14: end for
15: EndProcedure

visited in the next run if it is a child vertex of the vertex visited

currently. The 𝑤ℎ𝑖𝑙𝑒 loop from line 4 to 8 guarantees that all the

child vertexes connected by tree edges will be visited. After this, the

child vertexes connected by non-tree edges will be visited (line 10

to 14).

There are some scenarios the DFS procedure needs to visit the

child vertexes in a specific order. For example, some applications

will perform the DFS according to the weight of the edges. In this

scenario, we may need to add some extra control flows to adapt

to this scenario. For example, add an 𝑖 𝑓 condition to determine

which visit order we should follow in this run. It needs to be noted

that, even if we need to visit the vertexes connected by non-tree

edges first, our method(AF method) could still achieve comparable

performance with the state-of-the-art methods. We will elaborate

on the details in Section 5.3.

Example 4.9. We show an example of the SF method in Figure 4.

Assume that we need to traverse from vertex 1. Vertex 3’s subscript

is 8 which is smaller than that of vertex 1. Thus, vertex 3 will be

pushed into the stack. Similarly, vertexes 8, 2 and 5 will be pushed

into stack sequentially. Vertex 6’s subscript is larger than that of

vertex 5. Hence, vertex 5 tries to visit the non-tree edges. However,

vertex 2 is visited before, so vertex 5 is popped out and backtracks

to vertex 2. Vertex 𝑛𝑒𝑥𝑡 now points to vertex 6 and visits it. Then,

𝑛𝑒𝑥𝑡 points to vertex 9 whose subscript is larger than that of vertex

6 and vertex 2. As both vertexes have no non-tree edges, they will

be popped out. Vertex 9 will be visited from vertex 8. After that,

vertexes 4 and 7 will be investigated. The details are omitted as

they are similar to the aforementioned procedure.

From this example, we can deduce that the SFmethod can achieve

a higher cache utilization. For instance, in Example 4.9, vertexes 1, 3,

8, 2 and 5 are sequentially accessed from memory. Compared with

the traditional DFS approach that accesses memory in a random

manner, the visit order of the SF method can greatly lower the

cache misses. In fact, the SF method can also achieve higher cache

efficiency than the AF method. Assume that we want to conduct

DFS from vertex 8, if we visit non-tree edges first, we will only

sequentially visit vertex 2 after we visit vertex 8. Then, vertex 3 will

be visited through non-tree edges by random memory access. In

Algorithm 4 Adjacent list First DFS Algorithm

1: vertex next //next is a global variable

2: Procedure AF(vertex 𝑐𝑢𝑟 )
3: cur.vis = true

4: for 𝑥 ∈ 𝐶𝑛𝑡 (𝑐𝑢𝑟 ) do
5: if 𝑥 .𝑣𝑖𝑠 ≠ 𝑡𝑟𝑢𝑒 then
6: 𝐴𝐹 (𝑥)
7: end if
8: end for
9: next = the next vertex of 𝑐𝑢𝑟

10: while 𝑛𝑒𝑥𝑡 .𝑝𝑜𝑝 ≤ 𝑐𝑢𝑟 .𝑝𝑜𝑝 do
11: if 𝑛𝑒𝑥𝑡 .𝑣𝑖𝑠 = 𝑡𝑟𝑢𝑒 then
12: next = the vertex in 𝑛𝑒𝑥𝑡 ’s pop position

13: else
14: 𝐴𝐹 (next)

15: end if
16: end while
17: EndProcedure

this case, although vertex 5 is also a child vertex of vertex 2 and it

is just in the next memory position, the AF method will not visit it

in the next run. However, for the SF method, vertex 8, 2 and 5 will

be visited sequentially, the optimized vertex visit order can achieve

a higher cache efficiency.

In addition to the higher cache efficiency achieved, in practice,

the SF method can also lower branch prediction misses. This is

because the SF method handles edges in different categories in

different manners. It can be observed from Figure 3, most of the

non-tree edges will connect vertexes in front of the current vertex.

On the contrary, all the tree edges will connect vertexes behind the

current vertex. When we visit vertexes connected by tree edges,

we always try to visit vertexes backward that are more likely to be

unvisited. When we visit the vertexes connected by non-tree edges,

we always try to visit the vertex in the front position, which is very

likely to be already “visited”. For instance, in Example 4.9, we start

our traversal from vertex 1, when we visit vertexes 1, 3, 8, 2, 5, 6, 9,

and 4, as all of them are first visited by the SF access, the “visited”

status checking in line 5 will always be true. On the contrary, when

we need to visit the non-tree edges (2, 3), (5, 2), and (9, 1), as the
edges try to visit vertexes backward, the status checking in line 11

will always be false. The high degree of consistency will greatly

improve the branch prediction accuracy.

Figure 4: Sequence first DFS traverse from vertex 1.
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Table 1: Percentage of condition being true in line 5 and 11.

Dataset line 5 line 11 Dataset line 5 line 11

LJ 90.79 0.63 Reddit 88.86 0.49

Web 96.77 0.62 Amazon 91.98 1.08

Email 97.18 1.23 Wiki-t 95.11 2.42

Wiki 96.32 3.31 Youtube 95.29 1.41

Pokec 89.75 0.53 CS 92.53 2.15

BerkStan 99.11 0.07 DB 98.01 0.71

Twitter 91.35 4.25 Trec 97.45 0.47

Arabic 99.36 0.02 Uk 98.99 0.06

To validate this, we conduct an experiment to compute the per-

centage of the condition being true in line 5 and 11 (Algorithm 3),

respectively. The result is shown in Table 1. We can observe from

the table that, in most cases, more than 90 percent of the “if” condi-

tion will be true in line 5. However, for the “if” condition in line 11,

most will be false. In fact, the percentage of the condition being

true is correlated to the number of cycles in the graph. As stated in

the previous paragraph, for a cycle in the graph, there must be a

backward edge in our DFS sequence which tends to incur a false

condition in line 11. At the same time, as it will continue to traverse

along the sequence, it will meet a visited vertex to finish the cycle.

Thus, it is bound to incur a false condition in line 5. For some social

network graphs such as Lj, Pokec and Reddit, as there are a large

number of cycles, they are more likely to get a false condition in

both line 5 and 11.

In fact, we can achieve a higher branch prediction accuracy when

we need to do a whole graph traversal. It frequently happens in

some applications. For instance, the Tarjan algorithm will traverse

all the graph vertexes when we need to find the SCCs or generate a

DAG (Directed Acyclic Graph). We want to highlight that in static

graphs, the Tarjan algorithms only need to be executed once to

generate the DAGs. The preprocessing time for graph ordering may

be hard to amortize. However, for dynamic graphs whose edges

can be inserted/deleted, there is no perfect approach to maintain

the DAGs [26]. Especially when edges are deleted, although there

are some techniques [26] that can speed up the DAG computation,

DFS traversal is still inevitable. As a consequence, it is essential to

accelerate the Tarjan algorithms.

For the Tarjan algorithms, the source vertex from which we start

the traversal does not matter. We can traverse the graph in the

same order that we construct the sequence. Thus, in Figure 3, we

can start the Tarjan algorithms from vertex 0. In this case, all the

vertexes connected by tree edges will be “unvisited”, and the “if”

condition in line 5 will always be true. On the contrary, the status

of the vertex connected by non-tree edges will be “visited”, and the

“if” condition in line 11 will always be false. Therefore, there will
be no branch predictions for the “visited” status checking.

The corresponding pseudocode is shown in Algorithm 5. Our

SCC detection procedure visits vertexes along the sequence (line 30).

The visit order is the same as the sequence construction order. All

the tree edges are handled in the “while” loop from line 9 to 13.

As the vertexes connected by the tree edges are unvisited, there is

thus no need to check the visit state of the vertex. We recursively

traverse the child vertex (line 10). Similarly, the vertexes connected

Algorithm 5 Strongly Connected Component Detection

1: dfn=0

2: scc=0

3: Procedure Tarjan_SeqDFS(vertex now, stack tjstack)

4: now.dfn = dfn++

5: now.low = now.dfn

6: now.vis = true

7: tjstack.push_back(add(now))

8: vertex *ptr = add(now)+1//next sequence vertex

9: while ptr.pop ≤ now.pop do
10: Tarjan_SeqDFS(*ptr, tstack)

11: now.low = min(now.low, ptr.low)

12: ptr = address of seq(ptr.pop)

13: end while
14: for 𝑥 ∈ 𝐶𝑛𝑡 (𝑛𝑜𝑤) do
15: if 𝑥 ∈ 𝑡 𝑗𝑠𝑡𝑎𝑐𝑘 then
16: now.low = min(now.low, x.dfn)

17: end if
18: end for
19: if now.low = now.dfn then
20: vertex *nxt = tjstack.pop_back()

21: nxt.scc = scc

22: while 𝑛𝑥𝑡 ≠ 𝑎𝑑𝑑 (𝑛𝑜𝑤) do
23: nxt = tjstack.pop_back()

24: nxt.scc = scc

25: end while
26: scc++

27: end if
28: EndProcedure

29: Procedure Scc_Detection
30: for i=0; i<n; i++ do
31: if seq[i] hasn’t been visited then
32: Tarjan_SeqDFS(seq[i], stack tjstack)

33: end if
34: end for
35: EndProcedure

by the non-tree edges are handled from line 14 to 18. All the vertexes

are visited before, and thus, we only need to check whether they are

still in the stack (line 15). Obviously, the elimination of the branch

predictions will greatly speedup the performance.

4.3 SeqDFS on Dynamic Graphs
We have thus far discussed SeqDFS on static graphs. Nevertheless,

the real-world graphs may be evolving. Once the graph is modified,

the corresponding graph ordering desires to be updated to achieve

optimal performance on the updated graph. However, for most

graph reordering approaches, they only focus on the static graphs.

Hence, an entire reconstruction is needed after every update, which

suffers from great performance degradation in dynamic scenarios

and generally impractical. To solve this problem, we discuss how

SeqDFS deals with dynamic graphs in this subsection.

4.3.1 Maintaining the Graph Order. Different from the existing

approaches, SeqDFS provides a maintainable graph ordering. As

discussed, the DFS sequence corresponds to a DFS tree. There-

fore, the problem can be transformed into maintaining the DFS

tree which has been extensively studied [4, 6, 24]. Yang et al. [24]
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Figure 5: The newly inserted forward-cross edge (9, 4) and
the time interval label.

propose an efficient DFS tree maintaining approach that can be

adapted to our scenario. Fortunately, no extra structure/information

is needed in the maintaining process. Wewill discuss their approach

in this section.

Generally, DFS tree maintaining is to eliminate the edges that

will break the DFS tree structure, which are defined as forward-

cross edge. A newly inserted edge (𝑢, 𝑣) is a forward-cross edge,
if it does not have an ancestor/descendant relationship, and 𝑢 is

visited before 𝑣 in the construction of the DFS tree [24]. We show

an example in Figure 5(a). During the construction of the DFS

tree, vertexes are visited along the blue arrows and backtracked

along the red arrows. After the DFS tree is constructed, a new

edge (9, 4) is inserted. However, vertex 9 is visited before vertex 4

during the construction of the DFS tree and they do not have an

ancestor/descendant relationship in the original DFS tree. Thus, the

edge (9, 4) is a forward-cross edge.
The core operation in the DFS tree maintaining approach is to

find out the forward-cross edges. To identify the forward-cross

edges, Yang el al. propose to label the graph vertexes with the time

interval that is defined in Definition 4.10. We show the correspond-

ing time interval of Figure 5(a) in Figure 5(b).

Definition 4.10 (Time Interval). Given a DFS Tree T and a ver-

tex 𝑢, the time interval of 𝑢 is denoted as IT (𝑢) = [𝑥,𝑦], where
𝑥 = IT (𝑢).𝑙𝑒 𝑓 𝑡 is the visited timestamp of 𝑢 in the DFS traver-

sal, and 𝑦 = IT (𝑢) .𝑟𝑖𝑔ℎ𝑡 is the pop-out timestamp of 𝑢 when its

out-neighbors are visited completely in the DFS traversal [8].

An inserted edge (𝑠, 𝑡)will be a forward-cross edge ifIT (𝑠) .𝑟𝑖𝑔ℎ𝑡 <
IT (𝑡).𝑙𝑒 𝑓 𝑡 . This means, in the original DFS tree, vertex 𝑠 is popped

out of stack before vertex 𝑡 is visited. For example, in Figure 5(b),

vertex 9’s pop-out time is 11 and vertex 4’s visit time is 14. Vertex 9

is popped out before vertex 4 is visited. Thus, it is a forward-cross

edge. We note that we can deduce the time interval information

from our DFS sequence. In fact, as we construct the DFS sequence

by the DFS procedure, the visited time of the vertex can be inferred

from its index in the sequence. Vertex 𝑢 is visited earlier than ver-

tex 𝑣 if it is in front of vertex 𝑣 in the sequence. Thus, for SeqDFS,

IT (·) .𝑙𝑒 𝑓 𝑡 can be replaced by the vertex’s index. The correspond-

ing IT (·) .𝑟𝑖𝑔ℎ𝑡 can be replaced by the vertex’s pop-out time used

in SeqDFS. Therefore, we can directly identify the forward-cross

edges using our DFS sequence.

Another core operation for DFS treemaintaining is to reconstruct

the local tree structure. Yang et al. [24] try to locate a minimum area

that would be affected by the edge update. In the process, the LCA

(lowest common ancestor) method is used to find out the root vertex

where the reconstruction process starts. Finally, a DFS procedure is

executed to modify the tree structure and the time interval.

Although our graph ordering is maintainable, the maintaining is

impractical for real-world graphs. First, graph ordering maintaining

tends to cost high overheads. As the graph is sequentially kept in

memory, modifying the vertex position means moving and copying

large memory blocks, which is very expensive. Second, the DFS

tree maintaining method is time-consuming. For example, when

the edge insertion updates the tree, it will cost nearly 0.5 second to

modify the tree structure in LiveJournal, even worse, the update

for deletion will cost more than 1 second [24]. Nevertheless, for

SeqDFS, reconstructing the whole graph will take only 3.28 seconds.

This means that for large number of graph updates, periodically

reconstructing the graph ordering is a practical strategy.

4.3.2 Maintaining the Sequence onDynamic Graphs. SeqDFS achieves
most of its performance improvement from the optimization of the

vertex visit order. It means that we can still achieve a satisfactory

performance improvement even if we do not maintain the graph

ordering. However, due to our proposed optimization in vertex visit

order, further operations are needed to handle the dynamic graphs.

We hence discuss the dynamic graphs in this subsection.

In SeqDFS, we consider each newly inserted edge as a non-tree

edge. Thus, when we insert an edge (𝑢, 𝑣), we only need to add

the edge to the adjacency list of vertex 𝑢. Compared with edge

insertions, edge deletions are much more complicated. If the edge

to be deleted is a non-tree edge, we will directly delete it from

the vertex’s adjacency list. If the edge to be deleted is a tree edge,

as it is implicitly covered by the sequence, we need to traverse

along the sequence to find out the edge and mark the target vertex

with a flag 𝑡𝑒𝑑𝑔𝑒 . If 𝑡𝑒𝑑𝑔𝑒 is set to false, it means the tree edge

that connects to the vertex is deleted. The process is very similar

to the aforementioned DFS traversal procedure, thus we omit the

algorithm here.

Vertex insertions/deletions rely on edge insertions/deletions.

When we need to insert a new vertex, we only need to add it to

the end of our sequence and insert all the related edges as non-tree

edges. The pop-out time of the newly inserted vertex will be the

prior vertex’s pop-out time plus one. Hence, it will never be visited

by sequential access. Vertex deletions are simple. We only need to

delete all the related edges.

5 EVALUATION
In this section, we conduct experiments by comparing SeqDFS with

the state-of-the-art approaches. In Section 5.1, we introduce the

experimental setup. In Section 5.2, we demonstrate the graph or-

dering construction overhead in different reordering approaches.

Then we conduct comparison in terms of DFS running time and

the corresponding effectiveness of cache/branch prediction in Sec-

tion 5.3 and 5.4 respectively. Finally, we evaluate the performance

of SeqDFS in SCC and bridge detection.
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5.1 Experimental Setup
Environment: Our experiments are conducted on a server with

an Intel Xeon CPU E5-2680 v3 2.50GHz, 64GB RAM, 32KB Level 1

cache, 256KB Level 2 cache, and 30MB Level 3 cache.

Baselines: We compare several existing approaches with our pro-

posed SeqDFS. For all the baseline methods, we acquire the code

from their authors.

• Original: The original graph ordering.

• Gorder [10]: The state-of-the-art approach that focuses on graph

ordering, which maximize the locality metric, Gscore, by a pro-

posed greed strategy.

• Rabbit [2]: A lightweight graph ordering approach that focuses

on end-to-end performance improvement.

• HC [3]: HubCluster, a variation of [27], which is a lightweight

Frequency-Based graph reordering approach that could achieve

the best performance in graph ordering construction.

• AF: SeqDFS with the AF method proposed in this paper, with

sequence first optimization disabled.

• SF: SeqDFS with the SF method proposed in this paper, with

optimized vertex visit order by sequence first optimization.

We note that for Original, Gorder, Rabbit and HC, the classic

DFS algorithm [8] is used to evaluate their performance.

Datasets: We conduct experiments on 16 real-world datasets. The

datasets are shown in Table 2.We collect the datasets from SNAP [14],

KONECT [12], and LAW [1]. All the datasets are stored in the com-

pressed sparse row (CSR) format.

• LJ, Youtube, and Pokec are social network datasets, which are

power-law graphs in nature.

• CS is a citation network extracted from the CiteSeer digital li-

brary.

• BerkStan and Web are web graph datasets in which vertexes

represent web pages and directed edges represent hyperlinks

between them.

• Wiki, Wiki-t, and Email are communication networks.

• Amazon is an Amazon product co-purchasing network.

• DB is a complete DBpedia network. Vertexes are entities included

in DBpedia and each edge represents one triple.

• Trec is a web graph collected from the TREC conference.

• Reddit and Twitter are two social network datasets obtained

from [22].

• Uk and Arabic are two web datasets crawled by [5].

5.2 Construction of the Graph Ordering
We show the graph reordering time for all the approaches in Table 2.

HC achieves the best performance in graph ordering construction.

As HC is a lightweight approach that sorts the graph vertexes

only according to their out-degree numbers, its time complexity

depends on the sorting approach they used. On the contrary, Gorder

brings the highest overhead in graph ordering construction. Gorder

applies an approximate approach of travelling salesman problem

(TSP) to compute the graph ordering, and hence, the process is

very time-consuming. After the optimization of priority queue, its

time complexity is 𝑂 (∑𝑢∈𝑉 (𝑑𝑜𝑢𝑡 (𝑢))2). Rabbit is a community-

based graph ordering method. The exact time complexity is not

shown in their paper; however, it is claimed that Rabbit has a time

Table 2: Dataset statistics and graph ordering time(s).

Dataset |𝑉 |(M) |𝐸 |(M) 𝑑𝑎𝑣𝑔 Gorder Rabbit HC SeqDFS

LJ 4.84 68.99 14.23 56.91 10.17 0.13 3.28

Web 0.87 5.11 5.83 0.98 0.51 0.03 0.42

Email 0.26 0.42 1.58 0.09 0.06 0.01 0.03

Wiki 2.39 5.02 2.09 3.92 0.91 0.04 0.26

Pokec 1.63 30.62 18.75 19.98 4.06 0.05 1.64

BerkStan 0.68 7.60 11.09 0.92 0.35 0.02 0.16

Twitter 2.88 6.43 2.23 5.39 0.92 0.08 0.47

Reddit 2.63 57.49 21.86 94.08 8.63 0.09 2.32

Amazon 0.40 3.39 16.79 0.56 0.25 0.01 0.19

Wiki-t 1.14 7.83 6.87 3.24 0.51 0.03 0.14

Youtube 1.14 4.94 8.68 2.6 0.69 0.05 0.25

CS 0.38 1.75 4.06 0.54 0.15 0.02 0.12

DB 3.97 13.82 6.96 3.66 1.87 0.09 0.88

Trec 1.60 8.06 10.06 0.9 0.57 0.04 0.26

Arabic 22.74 640 28.14 89.71 30.28 0.80 9.05

Uk 18.52 298.11 16.09 39.31 17.81 0.52 5.50

complexity roughly in proportion to𝑚. SeqDFS can achieve the

suboptimal performance in graph ordering construction. This is

because SeqDFS is a traversal-based approach. Most of the overhead

is caused by the traversal which dominates our graph ordering

construction costs. Thus, the time complexity is𝑂 (𝑛 +𝑚). We want

to highlight that, as all the existing graph ordering methods could

not be adapted to dynamic graphs, periodically reconstruct the

graph order is the only way to maintain the graph order. Thus,

for online scenarios, the methods with large order construction

overheads could hardly be applicable.

5.3 DFS Running Time
The performance of all evaluated approaches in terms of DFS run-

ning time is illustrated in Figure 6. Every time, we will randomly

select 100 source vertexes and conduct DFS from them, the total

DFS time is recorded. We will report the average time of 10 repeats.

HC exhibits the worst performance in the experiment. For all

the 16 datasets, HC can only speed up 4 of them. In most cases, HC

even degrades the DFS performance. Compared with HC, Rabbit

can achieve better performance. Nevertheless, on average, it cannot

achieve any performance improvement than the Original. This is

because in some of the datasets, the original graph ordering may

already have a certain degree of locality in nature.

For all the baselines, Gorder is the only approach that can reduce

the DFS running time among all the datasets. Therefore, in the

remainder of this paper, we only compare our proposal with Gorder.

LJ, Pokec, and Reddit are social network datasets with a large

average out-degree. For Gorder, they introduce high overheads

(56.91s, 19.98s and 94.08s, respectively) to compute the graph or-

dering. Compared with the original graph, on average, Gorder can

save 34% of the DFS running time. However, SF can reduce 47%

of the DFS running time while the graph ordering overheads are

much smaller (3.28s, 1.64s and 2.32s, respectively). We note that

although the AF method can also achieve a better performance than

the original graph, it is slower than Gorder in these three datasets.

Most datasets (Web, BerkStan, Amazon, Youtube, DB and Trec)

take several seconds to conduct DFS. Compared with Original, the
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Figure 6: DFS running time (in seconds)

largest performance improvement can be achieved in Web. For the

SF method, 73% of the DFS running can be reduced. For Gorder, the

number is 61%. Nevertheless, the largest performance gap lies in

DB. Compared with Gorder, SF can reduce more than 50% of the

DFS running time. On average, for these 6 datasets, SF can save 33%

of the DFS running time.

Arabic and Uk are two large datasets with several hundred mil-

lions of edges. SF achieves the best performance in both datasets.

On average, SF can save 16% of the DFS running time than Gorder.

Compared with the Original, the number is 26%.

The DFS running time in the 5 other datasets is less than one

second. The largest performance improvement is achieved in Twit-

ter. Gorder can reduce 50% of the DFS running time while SF can

save more than 75% of the DFS running time. Similar performance

can be achieved in Wiki and Wiki-t. In both datasets, SF can reduce

more than 50% of the DFS running time. For the 5 datasets (Email,

Wiki, Wiki-t, Twitter, CS), compared with Gorder, SF can reduce

26% of the DFS running time on average.

SF consistently outperforms Gorder in all the datasets. In fact,

even AF can outperform Gorder in most of the datasets except

LJ, Pokec, Reddit, Arabic, and Amazon. As discussed, SeqDFS ac-

celerates DFS by optimizing the vertex visit order. For the DFS

traversal along the tree edges, we can access the vertexes sequen-

tially. However, the vertexes connected by non-tree edges will still

incur random memory access. Therefore, the fewer the non-tree

edges are, the better performance we can achieve. Nevertheless,

all of these datasets are dense graphs with an average out-degree

larger than 14. There are a lot of non-tree edges that will incur

random memory access. Thus, the speed-up is limited.

This experiment also proves that optimizing the vertex visit

order is essential. The SF method outperforms the AF method in all

the datasets. In the best cases, in Web and BerkStan, SF can reduce

34% of the DFS running time than the AF method. However, they

achieve similar performance in Email and CS. This is because these

graphs are small and sparse. When the graph is small, few vertexes

will be visited during DFS, the performance gap will hence be small.

If the graph is sparse with few non-tree edges, both the AF and the
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Figure 7: Number of last level cache misses (million)

Figure 8: Number of branch prediction misses(million)

SF method will conduct DFS along the sequence. Thus, they will

achieve a similar performance.

5.4 Cache/Branch Prediction Effectiveness
We use Valgind[15] to simulate the cache and branch prediction

procedure. The last level cache miss number is shown in Figure 7.

For all the 16 datasets, the SF method achieves the smallest cache

miss number in 14 of them. In Twitter, the cache miss number of

the SF method is a little larger than that of the AF method, but the

gap is small. However, in Trec, AF performs better than SF, about

4% of the cache miss number can be reduced.

For the large social network datasets LJ, Pokec and Reddit, com-

pared with Gorder, the AF method will cause more cache misses;

however, SF can reduce an average of 16% cache miss number. Sim-

ilar to Figure 6, the largest performance gap lies in Web. In our

experiment, when we execute DFS on Web, SF will cause a little

more than 7 million cache misses. For Gorder, this number is 24

million. Gorder and SF achieve similar performance in Wiki and

Wiki-t. Nevertheless, SF is always preferable. For the other datasets,

compared with Gorder, SF can achieve an average of 17.3% cache

miss number reduction.

For all the 16 datasets, Gorder outperforms AF in 8 of them. This

means if we apply the graph ordering approach without the opti-

mization on the vertex visit order, AF can only achieve a similar

cache efficiency with Gorder. In practice, compared with the Origi-

nal, AF can still achieve an average of 17% cache miss reduction.

We show the branch prediction miss number in Figure 8. Gen-

erally, Gorder’s branch prediction is more accurate than the Orig-

inal. However, the improvement is limited. Both the AF and the

SF method can achieve a more significant improvement in branch

prediction than Gorder. For LJ, pokec and Reddit, compared with

Gorder, the AF method can reduce an average of 11% branch predic-

tion miss number. The SF method performs even better, with 37%

reduction achieved. For BerkStan and Web, this tendency stays the

same. Compared with Gorder, SF can reduce an average of 35% of

the branch prediction misses. The largest performance gap lies in

Arabic, in which SF can save more than 56% of the branch prediction

miss number than Gorder.

In most cases, SF outperforms AF. However, they achieve similar

performance in Wiki, Twitter, Wiki-t, Email and CS. This is because

these graphs are sparse. As mentioned above, both AF and SF tend

to visit vertexes along the sequence when the graph is sparse. The

similar memory access pattern will hence, lead to similar perfor-

mance in branch prediction. We highlight that, in these datasets,

the SF method can still achieve a much better branch prediction per-

formance than Gorder, with an average of 37.8% branch prediction

misses reduced.

5.5 Performance of Tarjan Algorithms
We compare the performance of SCC detection(Tarjan algorithm)

with the optimization of Gorder and SeqDFS, respectively. The

results are shown in Table 3. SeqDFS outperforms Gorder on all
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Table 3: The processing time(ms) for SCC detection and
bridge detection(in the bracket).

Dataset Original Gorder SeqDFS

LJ 1835(2068) 1517(1988) 1140(1102)

Web 159(178) 73(120) 57(52)

Email 10(16) 7(8) 5(4)

Wiki 177(211) 92(145) 85(65)

Pokec 739(891) 632(838) 501(493)

BerkStan 58(88) 52(85) 38(51)

Twitter 273(340) 155(217) 144(98)

Reddit 1620(1725) 1140(1419) 1071(907)

Amazon 88(99) 58(88) 36(38)

Wiki-t 84(111) 56(75) 44(40)

Youtube 138(160) 115(145) 72(62)

CS 33(68) 24(60) 22(22)

DB 273(564) 225(504) 165(209)

Trec 110(169) 94(154) 59(71)

Arabic 4063(7039) 3812(6760) 3515(4605)

Uk 2486(3280) 2121(3195) 1936(2319)

the datasets. On average, SeqDFS can save 20% of the overhead.

Compared with the Original, 41% of the overhead can be saved.

We also adapt SeqDFS to the bridge detection problem that can

also be solved by Tarjan algorithms. As it is quite similar to Al-

gorithm 5, we omit the corresponding pseudocode. We transform

all the datasets into undirected graphs and conduct experiments

on them. The results are shown in Table 3, where the numbers in

the bracket are the time needed to conduct bridge detection. For

Original and Gorder, bridge detection costs more overhead than

SCC detection in all the datasets. However, for our SeqDFS method,

bridge detection can be a little faster than SCC detection in some

datasets. As Gorder relies on connections to construct the graph

order, the undirected graph with a higher connectivity makes it

difficult for Gorder to cluster vertexes. However, SeqDFS can bene-

fit from the undirected graphs. Due to the higher connectivity in

undirected graphs, SeqDFS can construct a larger tree structure,

which means more visits will be executed along the sequence. Thus,

an even better performance than in directed graphs can be achieved.

For the original graphs, SeqDFS can reduce 57% of the overhead.

Compared with Gorder, the number is 48%. This proves that SeqDFS

can be readily applicable to other graph applications that depend

on depth-first traversal with satisfactory performance.

6 CONCLUSION
In this paper, we present SeqDFS to speed up the DFS performance.

First, we reorder the graph vertexes into a vertex sequence that is

more consistent with the DFS visit order. Second, we propose a new

DFS method in which part of the DFS visits can access the memory

sequentially. Both methods can achieve fewer cache misses and

branch prediction misses, and thus, improve the DFS performance.

We conduct the experiment on 16 real-world graphs. Our experi-

ments show that, compared with the state-of-the-art approaches,

SeqDFS can achieve an average of 27% DFS running time reduction

while the graph ordering overhead is only 1/15. Our experiments

also demonstrate that our method could be used to speedup other

DFS-based algorithms, e.g., SCC and bridge detection.
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