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ABSTRACT
GPU’s massive computing power offers unprecedented opportu-
nities to enable large graph analysis. Existing studies proposed
various preprocessing approaches that convert the input graphs
into dedicated structures for GPU-based optimizations. However,
these dedicated approaches incur significant preprocessing costs
as well as weak programmability to build general graph applica-
tions. In this paper, we introduce SAGE, a self-adaptive graph tra-
versal on GPUs, which is free from preprocessing and operates on
ubiquitous graph representations directly. We propose Tiled Par-
titioning and Resident Tile Stealing to fully exploit the computing
power of GPUs in a runtime and self-adaptivemanner.We also pro-
pose Sampling-based Reordering to further optimize thememory ef-
ficiency of SAGE through a lightweight and effective node reorder-
ing technique on the fly. Extensive experiments demonstrate that
SAGE can achieve superior graph traversal performance over exist-
ing approaches under different architectural scenarios, i.e., single-
GPU, out-of-core, and multi-GPU.
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1 INTRODUCTION
Large graphs are pervasive as people and things are digitally con-
nected in a complex way. The information embedded in graphs
brings opportunities to discover valuable insights that continuously
power the development of data-driven economy. According toGart-
ner [12], graph processing is becoming a key technology to sup-
port decisionmaking in 30% of organizations globally. Such a trend
poses an increasing demand for real-time graph processing. In re-
cent years, the rapid evolution of Graph Processing Units (GPUs)
has attracted significant attention in both industry and academia
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asGPUs offermassive computing horsepower for accelerating graph
processing workloads [2, 9, 13, 26, 27, 29, 30, 35, 43, 47].

In order to maximize the performance of GPU-based graph pro-
cessing, existing approaches propose dedicated preprocessing to
cater for their GPU-optimized algorithms [3, 11, 23, 31, 37, 38, 50].
Although such approaches can exploit the unique characteristics
of the GPU computing paradigm, there are two major drawbacks
for practical applications:

• Preprocessing Overhead. Existing approaches design sophisti-
cated algorithms to preprocess and transform the original graph
representation to dedicated structures. For large graphs with bil-
lions of edges, the preprocessing stage can take hours before ex-
ecuting any user workloads. Considering most real-world graph
analysis can be processed in a few hours [39], preprocessing in-
curs significant overheads and cannot be overlooked. Furthermore,
when graphs are subject to updates, existing approaches have to re-
build their dedicated structures through the preprocessing stage.

• Limited Programmability. Developing new algorithms on the
dedicated approaches incurs steep learning curves. In addition to
the off-the-shelf algorithms, real-world applications require cus-
tomized or new graph algorithms. Implementing correct and ef-
ficient GPU programs is challenging in general. Furthermore, in
large corporations, it is not practical for data engineers to pick the
best solution to suit their applications and implement efficient al-
gorithms on the dedicated structures.The issue of programmability
magnifies when the application needs to be deployed under differ-
ent architectures, e.g., single-GPU, out-of-core, and multi-GPU.

Motivated by the aforementioned drawbacks, we proposeSAGE,
a framework that enables self-adaptive graph traversal to support
efficient graph processing on GPUs. SAGE adopts the common
node-centric parallel graph processing pipeline and is free from
preprocessing, i.e., it starts from the ubiquitous Compressed Sparse
Row [45] (CSR) as an initial representation. In other words, after
loading the graph data in the CSR format on GPUs, SAGE can im-
mediately respond to queries without any launching latency. As
CSR is a widely used graph representation, it also lowers the bar-
rier for data engineers to develop efficient algorithms with SAGE,
compared with existing dedicated solutions. Meanwhile, SAGE is
self-adaptive and optimized for GPU’s hardware characteristics,
based on the graph access patterns of the processed workload. By
continuously processing the graph on-the-fly, SAGE is able to op-
timize the GPU efficiency of processing graph data incrementally,
and render competitive or even better performance.

To enable SAGE’s self-adaptivity, we propose a novel runtime
workload reallocation strategy, i.e., Tiled Partitioning. In particu-
lar, the graph data is dynamically partitioned into tiles, the sizes
of which fit the runtime GPU multi-threading resources. Hence,
such tiles are suitable to be consumed by the GPU’s cooperative
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groups of threads concurrently. The tile accesses will be stored as
scheduling logs, i.e., resident tiles, which are then reused when the
same data is visited subsequently. Resident tiles avoid the cost of re-
peated online scheduling and are immediately available for deploy-
ing threads to achieve the best performance. Further, resident tiles
are visible globally on the device and enable task stealing among
all GPU processors, i.e., Resident Tile Stealing, to achieve higher
parallelism and hence, better hardware utilization.

In addition to the features above, the reusable resident tiles en-
able profiling statistics to quantify the access patterns of graph
data. Hence, we take a step further to propose Sampling-based Re-
ordering for better memory access performance. The node indices
are adjusted gradually according to the statistics of tile accesses by
sampling, in order to increase data locality within tiles, for higher
memory efficiency.

The contributions of this paper are summarized as follows:
• We introduce SAGE, a GPU-based graph processing framework.

We propose Tiled Partitioning and Resident Tile Stealing, which
enable self-adaptivity to harness GPUs’ computing power with-
out preprocessing costs.

• We devise Sampling-based Reordering to further optimize the
memory efficiency when accessing graph data on SAGE.

• We conduct an extensive experimental evaluation on different
types of graph datasets, which demonstrates that SAGE achieves
superior performance for applications running on single-GPU,
out-of-core, and multi-GPU scenarios.
The rest of this paper is organized as follows. In Section 2, we

present the preliminaries. In Section 3, we discuss several chal-
lenges related to graph analysis on GPUs and review the existing
solutions. In Section 4, we demostrate how SAGE performs graph
procssing tasks as a framework and provide implementation exam-
ples. Section 5 proposes the self-adaptive graph traversal on GPUs,
and Section 6 discusses the further optimization of memory ac-
cess efficiency by Sampling-based Reordering on SAGE. Next, we
present the experimental evaluation in Section 7 and we conclude
the paper in Section 8.

2 PRELIMINARIES
2.1 GPU Architecture
A dedicated GPU card is composed of processors and device mem-
ory. The advantage of GPUs in accelerating graph computation is
attributed to: (a) its massive number of processors; (b) its ultra-high
memory bandwidth.TheGPU’s chip consists ofmultiple streaming
multiprocessors (SMs). Within an SM, the minimum granularity of
instruction scheduling is a warp composed of 32 threads, i.e., in
each clock cycle, the scheduler can issue an eligible warp (not be
stalled) to compute units for executing the next instruction. If the
threads of the same warp enter different condition branches, then
the scheduler is only able to issue one instruction out of multiple
instruction pointers (IP) in each cycle. Hence, the threads that do
not belong to the selected IP will be marked as inactive, and the
corresponding hardware resources will be idle in this cycle. This
aforementioned phenomenon is called warp divergence, which is
a major concern of the performance optimization on GPUs [44].
Meanwhile, the two-level cache hierarchy L1 (per SM) - L2 (de-
vice) is adopted on GPUs. For boosting the efficiency of parallel
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Figure 1: An example of graph representation.

memory access, the corresponding cache line size is designed to
be larger than the CPU counterpart, i.e., 128 bytes. Consequently,
the uncoalesced memory access will result in a high memory ac-
cess latency, and cause the effective memory bandwidth to be far
lower than the theoretical maximum. This is another major con-
cern of the performance optimization on GPUs [1].

2.2 GPU-accelerated Graph Analysis
Given a graph𝐺 = (𝑉 , 𝐸),𝑉 is the node set and 𝐸 is the edge set. Let
OutDeg(𝑢) = {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸} denote node 𝑢’s outdegrees in 𝐺 .
As shown in Figure 1, for the sorted edge list, we can use two arrays
(u and v) to represent the graph data. This representation is called
Coordinate Format [36] (COO). For node-centric graph processing,
we need to introduce u_offset to indicate the range of edges in the
edge list, in order to support queries onOutDeg(𝑢). Usingu_offset
and v to represent the graph data is called the Compressed Sparse
Row Format [45] (CSR). In this work, we mainly focus on node-
centric graph processing based on the CSR format.

In recent years, GPU has attracted a great deal of attention from
both academia and industry to explore the usage of GPUs for ac-
celerating graph analysis, such as Breadth-First Search [27, 29, 30,
47, 50], PageRank [9, 14, 33, 35], Connected Component [2, 18, 43],
Constrained Shortest Path [28], Graph Pattern Matching [13, 15,
26, 46] and many others.These GPU-optimized algorithms are able
to achieve significant performance improvement compared with
CPU-based counterparts. Further, some existing studies focus on
GPU-based graph processing in specific application scenarios, e.g.,
dynamic graphs [40, 51] and compressed graphs [41].

Meanwhile, some existing studies focus on general GPU-based
graph computing platforms. Medusa [53] is a pioneer and proposes
a set of user-defined APIs for graph computation. Users can im-
plement graph algorithms in a sequential style and the generated
codes can be executed effectively on GPUs. Gunrock [48] provides
a more flexible design to support a broader range of graph appli-
cations and the graph computation can be conducted on multiple
GPUs. Groute [3] presents an asynchronous graph computational
model specific to the single node multi-GPU scenario in order to
improve the hardware utilization. Lux [19] further supports the dis-
tributed multi-GPU system. In a nutshell, these platforms take the
GPU’s hardware characteristics into full consideration and design
universal APIs for graph computation. The user-customized graph
algorithms can be executed efficiently on such platforms without
careful consideration for the GPU’s hardware characteristics.

3 CHALLENGES AND RELATED STUDIES
In this section, we discuss several challenges on how to achieve
superior performance for GPU-accelerated graph processing, and
we review how existing studies address each challenge.



3.1 Parallelism and Load Balancing
In node-centric parallel graph processing, the parallel tasks are
scheduled at the granularity of frontiers (i.e., nodes). It is widely
known that formost graph data, the outdegree distribution of nodes
is highly skewed, as large graphs often follow a power-law distri-
bution. Therefore, to process frontiers in parallel, the load distribu-
tion of scheduled tasks is imbalanced, and such load imbalance will
degrade the performance. Furthermore, the GPU issues a warp (32
threads) in the SIMT manner. Hence, if the frontiers (correspond-
ing to the threads in the same warp) do not have the same |outde-
gree|, the hardware resources cannot be fully utilized due to warp
divergence. To alleviate the low parallelism issue due to load imbal-
ance, existing work proposes solutions from two perspectives [32]:
(a) online thread resource reallocation, (b) graph preprocessing.

Among the existing work, D. Merrill et al. [30] propose an ef-
fective online resource rescheduling. The main idea is to schedule
the hardware resources of blocks, warps, and threads for frontiers
with different loads. Such an online task reallocation depends on
the inter-thread communication and the synchronization mecha-
nism, and each thread will synchronize and access the predefined
shared memory periodically in order to be aware of the collabo-
ration requests from other threads. However, it introduces consid-
erable synchronization overheads and is not benefical to iner-SM
load imbalance due to the device limitation. Meanwhile, to alle-
viate the irregularity of the original graph data distribution, the
preprocessing techniques [6, 21, 37] on graph representations are
proposed. An example is Tigr [37], which introduces auxiliary
structures, and specifically conducts a partition on the edges of
the nodes with a large |outdegree| in order to migitate the effect
of their outdegree distribution. However, we note that the graph
topology is actually altered in this process. Therefore, to achieve
equivalent results on the precessed graph, application-specific ad-
justments are required. This may bring a huge challenge when de-
velopers implement customized graph applications.

3.2 Cache and Memory Efficiency
GPU-based graph analysis is generally memory-intensive, and the
performance of GPU-based graph analysis cannot be easily esti-
mated by the theoretical memory bandwidth of GPUs. If the mem-
ory access patterns of the application lack locality (i.e., random-
like access), the effective memory bandwidth will be lowered sig-
nificantly.The main reasons are two-fold: (a) under random access,
the hit rate of caches is rather low; (b) in a cache miss, the mem-
ory controller will use the cache line as the granularity to swap
data between memory and cache. This causes memory access am-
plification, which can be measured as a ratio between the effective
memory bandwidth and the actual memory bandwidth. Unfortu-
nately, graph data generally does not exhibit a high locality and
the size of the GPU cache line is as large as 128 bytes. Take 4-byte
labels as an example, if the neighbors’ indices are scattered, the
access amplification can reach 32x in the worst case.

For boosting the memory/cache efficiency in graph analysis, ex-
isting work mainly employs the reordering technique. Node re-
ordering is based on a bijection 𝜎 : 𝑉 → 𝑉 , which assigns a new
labelling to all nodes in the graph, to improve the locality of outde-
grees’ indices. Existing studies propose different approaches based
on various cost models, to improve the memory efficiency of graph
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Figure 2: Parallel graph processing computational pipeline.

representations. Reversed Cuthill–McKee [10] (RCM) reduces the
index range of a node’s outdegrees through reducing the band-
width of sparse adjacency matrix. Layered Label Propagation [5]
(LLP) enables the nodes within the same clustering to have con-
tiguous indices via graph clustering. Further, Gorder [49] maxi-
mizes the window-based sum of common indegrees to achieve su-
perior performance.

Although the reordering-based approaches manage to improve
the locality of neighbors’ indices based on the graph’s topology,
the computational pipeline of parallel graph processing is not taken
into consideration. CuSha [23] proposes to optimize towards the
computational pipeline of GPU-based parallel graph processing,
and employs preprocessing techniques to divide the outdegrees
into shards according to their indices. Nonetheless, this approach
assumes that the parallelism is high enough, i.e., for any shard (i.e.,
an adjacent index interval), there are always enough neighbors to
be processed so that the GPU can be fully utilized.

3.3 Memory Access in Out-of-Core Scenarios
In the out-of-core scenarios, we need to access data that is not
stored on device memory. One strategy is to access data in the
external memory on-demand. The performance challenge of this
on-demand access lies in that the communication frame consists
of both control segment (header) and data segment (data payload)
no matter which communication protocol is used. Graph analy-
sis tends to generate massive and non-contiguous access requests,
which leads to massive of communication frames with a small pay-
load. The requests cause the controller to be under high pressure,
and the ratio of the effective payload is thus reduced, which brings
down the effective bandwidth to a large extent. The other strategy
is to maintain an out-of-core data pool in the local device memory
in a cache-like manner, e.g., unified memory [25] (UM).

In order to improve the efficiency of external memory access
in GPU-based graph analysis, some techniques are proposed. S.W.
Min et al. [31] demonstrate the detailed behaviors of accessing
the host memory through PCIe and propose to maximize the PCIe
bandwidth via “merged” and “aligned” access behaviors.HALO [11]
suggests a reordering-based optimization approach to boost the ef-
ficiency of UM in graph applications in which the nodes are or-
dered according to their centrality in the graph topology. Another
example is Subway [38] in which a subgraph extraction approach
is presented to identify the active edges in the current situation,
and then the desired data in the external memory is preloaded in
an asynchronous way.

4 GRAPH PROCESSING FRAMEWORK
The parallel graph processing framework of SAGE falls into the
node-centric processing paradigm, and adopts thewidely employed



Algorithm 1 filtering of Example Applications
1 procedure filter(frontier, neighbor)

2 // for Breadth−First Search

3 if dist[neighbor] = −1 then

4 dist[neighbor] := dist[frontier] + 1

5 filter_in(neighbor)

6 end_if

7

8 // for Betweenness Centrality (forward phase)

9 if dist[neighbor] = −1 then

10 d := atomicCAS(dist[neighbor], dist[frontier] + 1)

11 if d = −1 then

12 filter_in(neighbor)

13 end_if

14 end_if

15 if dist[neighbor] = dist[frontier] + 1 then

16 atomicAdd(sigma[neighbor], sigma[frontier])

17 end_if

18

19 // for Betweenness Centrality (backward phase)

20 if level[neighbor] = level[frontier] + 1 then

21 increment := sigma[frontier] / sigma[neighbor]

22 increment ∗= delta[neighbor] + 1

23 atomicAdd(delta[frontier], increment)

24 end_if

25

26 // for PageRank

27 increment := pr_in[frontier] ∗ 0.85

28 increment /= outdegree_cnt[frontiter]

29 atomicAdd(pr_out[neighbor], increment)

30 end_procedure

pipeline based on double-buffering frontier queues, i.e., iteratively
executing a pipeline of expansion - filtering - contraction as
shown in Figure 2. Each iteration starts from the frontier array
that denotes the active nodes in the current iteration. First, in the
expansion step, the outdegrees of all frontier nodes are expanded.
Next, in the filtering step, the outdegrees expanded in the expan-
sion step (i.e., the neighbors of the active nodes in the current iter-
ation) will be investigated if they should pass the filter and enter
the next iteration. Finally, in the contraction step, the unfiltered
neighbors are compressed to a contiguous array and used as the
frontiers in the next iteration. It is clear that in such a computa-
tional pipeline, it is easy, in each step, to parallelize the workloads
and execute them in a multi-threaded manner.

The above pipeline that SAGE adopts can effectively support a
wide range of graph applications. Essentially, through accessing
and updating the attributes of nodes, the computational pipeline
decides if a node will be active in the next iteration. This iterative
process is terminated when there are no frontiers generated, mean-
ing that the attributes of all nodes (i.e., the desired outputs of this
application) are converged according to the requirements of the ap-
plication. The main logic of graph applications is implemented in
the filtering step, in which edges between frontiers and their neigh-
bors are traversed. Therefore, developers only need to implement
the filtering interface to customize their applications.

Algorithm 1 shows the implementation of three representative
graph algorithms, i.e., Breadth−First Search (BFS), Betweenness
Centrality (BC), and PageRank (PR), based on SAGE. Taking BFS as
an example, in the filtering step, each neighbor will be checked if it
has already been traversed via accessing the distance attribute. If
not, the distance attribute is updated and the corresponding neigh-
bor can pass the filter and will be the frontier of the next iteration.
Due to limited space, we only elaborate on three graph applica-
tions as examples and evaluate them in the experiments. However,

Algorithm 2 Load Reallocation by Tiled Partitions
1 procedure expandFrontiers(frontiers[], csr)

2 frontier := frontiers[thread_id]

3 u_beg := csr.u_offsets[frontier]

4 u_end := csr.u_offsets[frontier + 1]

5 neighbor_size := u_end − u_beg

6

7 tile := cg::this_thread_block()

8 while tile.size() ≥ MIN_TILE_SIZE do

9 while tile.any(neighbor_size ≥ tile.size()) do

10 leader = tile.elect(neighbor_size ≥ tile.size())

11

12 gather := tile.shfl(u_beg, leader)

13 gather += tile.thread_rank()

14 if leader = tile.thread_rank() then

15 neighbor_size %= tile.size()

16 u_beg := u_end − neighbor_size

17 end_if

18 gather_end := tile.shfl(u_end, leader)

19 leader_frontier = tile.shfl(frontier, leader)

20

21 while (tile.all(gather < gather_end)) do

22 neighbor := csr.v[gather]

23 filter(tile, leader_frontier, neighbor)

24 gather += tile.size()

25 end_while

26 end_while

27

28 tile := cg::partition(tile)

29 end_while

30

31 cg::this_thread_block().sync()

32 handle_fragment(frontier, u_beg, u_end, csr)

33 end_procedure

the pipeline based on iterative graph traversal, which is adopted
by SAGE, has been employed to support a wide range of graph pro-
cessing primitives through customized filter(frontier, neigh-

bor) interfaces, including but not limited to: (a) Tarjan (construct
the search tree and propagate the lowest timestamps); (b) Con-
nected Component (merge two components of the frontier and the
neighbor on the disjoint-set forest); (c) Label Propagation (identify
the label majority among all neighbors of a frontier); (d) Shortest
Path (iteratively update neighbors’ distances); etc.

5 SELF-ADAPTIVE GRAPH TRAVERSAL
In this section, we propose how SAGE conducts a self-adaptive
graph traversal without a need for preprocessing.

5.1 Load Reallocation by Tiled Partitions
SAGE starts from CSR where the outdegree distribution can be se-
riously skewed to cause load imbalance. Hence, we conduct load
reallocation in the runtime. In the beginning of every graph pro-
cessing iteration, each frontier (i.e., active node) is assigned to a
thread. Inspired by [30], a thread will, according to the |outdegrees|
of the corresponding frontier assigned, preempt other threads and
distribute its neighbors to them for processing. Different from [30]
that decides if the task of a certain frontier should be handled by
a block, a warp or a thread, based on |outdegrees| and the GPU’s
thread number in different thread hierarchical groups, we propose
a more fine-grained load reallocation, i.e., Tiled Partitioning, based
on tiled partitions when expanding the outdegrees of a frontier.
Throughout this paper, a tile refers to a group of threads in a col-
laborative state, i.e., a particular number of threads functioning as
one by communicating closely and executing synchronously.



Algorithm 2 illustrates the expansion step of the node-centric
parallel graph processing shown in Figure 2, with a Tiled Partition-
ing manner. The input is the frontier array and the graph data rep-
resented in CSR format. In this step, we conduct the filtering step
(highlighted in line 23) for each expanded outdegree of each node
in the frontier array.
• Thread Management: We note that Algorithm 2 is executed in
parallel in the SIMTmanner.That is, each thread executes the same
program and distinguishes itself from others via thread_id. For
instance, in lines 2-5, each thread gets the frontier (node) assigned
to it via thread_id and obtains the range of the outdegrees of
node in csr.v from csr.u_offsets. Further, each thread gets its
|outdegrees|, i.e., neighbor_size for load reallocation. The func-
tions highlighted in purple in the pseudocode are the interfaces
of Cooperative Group [16] (CG). CG represents a group of threads
in a collaborative state, and the threads of one CG cooperate via
calling APIs of the same instance of CG they hold. In other words,
similar to thread_id, threads distinguish the cooperative thread
groups by different instances of CG they hold in the SIMT execu-
tion. Through this_thread_block(), the threads belonging to
the same block will get the same instance of CG, i.e., tile. In the
following discussion, tile refers to an instance of CG that is held
by a group of threads in a collaborative state.
• Leader Election: In line 7, tile is initialized as the threads in
the whole block, i.e., tile.size() is the thread number in a block.
After that, in the loop of lines 9-26, if a thread’s current |outdegrees|
exceeds tile.size(), it joins the election to become the leader so
that all threads in thewhole tile consumes the leader’s workloads
collaboratively, until there are no more threads with a |outdegrees|
larger than tile.size(). any(bool) and all(bool) are vote
functions of CG, and return a Boolean variable denoting if any/all
of the conditions passed from all threads of the tile are true. Lines
10-19 describe the leadership election and the process in which
the leader thread assigns its loads to tile for collaboration. In
detail, among all threads that input a true condition, elect(bool)
returns one of their ranks. shfl(variable,rank) is the shuffle
function that returns variable value of the corresponding thread.
• Thread Cooperation: When the leader is elected in line 10, in
lines 12-13, each thread in tile gets the pointer of the outdegree
to handle, according to the beginning offset of the outdegrees to be
processed by the leader, as well as its own rank in tile. In lines
14-17, the leader thread updates its outdegree interval to process,
as these tasks are already distributed to tile. Lines 21-25 depict
how the tile processes the leader’s outdegrees in a collaborative
and parallel manner. Specifically, in line 22, each thread reads the
index (𝑣) of the corresponding outdegree from CSR and then, in
line 23, conducts the following filtering step on the neighbor node.
When the execution reaches line 28, it means that the condition
in line 9 turns false, i.e., there are no more threads in tile with
the number of outdegrees to handle larger than the tile size. Then
the tile splits into multiple smaller CGs that continue to handle the
threads’ outdegrees to be processed.
• Example: Figure 3 illustrates an example of load reallocation by
tiled partitioning. For simplicity, we assume a block consists of 16
threads in the figure. Further, as for tiled partitions, we adopt the
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Figure 3: An example of tiled partitioning.

binary partition and set MIN_TILE_SIZE=8. Each of the 16 threads
in this block is assigned one frontier, with each frontier’s |outde-
grees| specified in the grids on the top. Some of the frontiers have
a larger |outdegrees| and are highlighted in bright colors, whereas
the rest of the frontiers in grey have only one outdegree. In the
beginning (line 7), all 16 threads in the block hold the same in-
stance of tile with a size of 16, i.e., tile<16>. Therefore, the red
thread and the orange thread will join the election in line 10, due to
their neighbor_size (i.e., 34, 27) being larger than tile.size()
(i.e., 16). Suppose the red thread’s u_beg and u_end are [0, 34) and
it wins the first election. Then in lines 12-13, each thread obtains
the red thread’s u_beg, adds its own thread_rank() to derive
the offset of its corresponding outdegree to process in collabora-
tion. In lines 14-17, the red thread’s u_beg is adjusted to 32, as it
has distributed the tasks of its 0-31 outdegrees to other threads.
Next, the loop in lines 21-25 will be executed twice, and each time
the 16 threads in tile will handle the 16 outdegrees of the red
thread. When the execution reaches line 21 for the third time, the
remaining outdegrees of the red thread are fewer than 16, i.e., some
threads’ gather exceeds gather_end and hence, the loop ends.
Similarly, the orange thread wins the second election in line 10 (as
there are no other candidate threads), and 16 out of its 27 outde-
grees will be consumed. After that, the tile will be partitioned. To
be specific, when the execution of all the 16 threads reaches line
28, threads 0-7 will get an instance of tile<8>, while threads 8-
15 will get another one. Then these two groups of threads do not
communicate with each other anymore, and each group handles
the frontiers with neighbor_size larger than 8 collaboratively
within the group. For example, tile<8> composed of threads 0-
7 will in order handle the 8 outdegrees out of the remaining 11
ones held by the green thread, and then the 8 out of 9 held by the
yellow thread. When tile is partitioned into a smaller size than
MIN_TILE_SIZE (line 8), the task fragments (i.e., remaining neigh-
bors) of each thread are no longer considered imbalanced.

We skip the implementation details of handling fragments (line
32), and refer interested readers to the fine-grained scan-based gath-
ering discussed in [30]. Grouping multiple threads in tiled parti-
tions in a dynamic manner can further improve the usage of par-
allel computational resources of GPUs, when the graph data dis-
tribution is imbalanced and irregular. We note that limited by the
scale of the example, this advantagemay not be sufficiently demon-
strated, as the size of a block can generally be up to one thousand.
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Figure 4: An example of work stealing by resident tiles.

Algorithm 3 Resident Tile Stealing
1 procedure expandFrontiers(frontiers[], csr)

2 // expand the tiled partitions of the frontier

3 nodes, offsets, sizes = expandTiles(frontiers, csr)

4 node := nodes[thread_id]

5 u_beg := offsets[thread_id]

6 neighbor_size := sizes[thread_id]

7 u_end := u_beg + neighbor_size

8

9 // consume the partitions with a corresponding size

10 tile := cg::this_thread_block()

11 while tile.size() ≥ MIN_TILE_SIZE do

12 while tile.any(neighbor_size = tile.size()) do

13 leader = tile.elect(neighbor_size = tile.size())

14 // similar to Algorithm 2

15 end_while

16 tile := cg::partition(tile)

17 end_while

18

19 cg::this_thread_block().sync()

20 handle_fragment(u_beg, u_end, csr)

21 end_procedure

5.2 Work Stealing by Resident Tiles
The approach based on task reallocation to solve the load imbal-
ance when expanding frontiers is essentially to split a frontier’s
outdegrees into multiple tiled partitions with specific sizes, and
then handle each partition in parallel through adjusting the size
of CG dynamically. Though this approach can improve the hard-
ware utilization and parallelism when processing the imbalanced
graph data, there exist several major disadvantages. First, the dy-
namic adjustment in the runtime will inevitably introduce non-
negligible overheads, which restricts the maximum performance.
Second, limited by the hardware design of GPUs, such runtime ad-
justments can only be executed within a block. This means that
such adjustments can only function within an SM, but cannot ben-
efit the load imbalance among SMs. Third, in a collaborative state,
though each thread is assigned several tasks, these tasks will not
enter the execution pipeline until the thread is elected leader in the
thread group. This characteristic will degrade the potential paral-
lelism. For GPU-based graph analysis, as discussed in Section 3.2,
the graph computation is generally memory-intensive, meaning
that for a single thread, most instruction cycles stall due to the
memory latency. As a result, we need the parallelism to be high
enough to fully occupy the memory pipeline.

Following the example in Figure 3, as illustrated in Figure 4 (a),
when the red threadwins the control in tile by election, in line 22,
the 16 threads in tile read the index of the outdegree from CSR,

and the whole tile will stall until the end of memory access (gen-
erally hundreds of cycles). However, if there are no (or not enough)
other threads of the SM waiting to be scheduled, the scheduler has
no instructions to issue in the next cycle and both the compute
units and the memory pipe are wasted. In other words, the tasks
of one tile cannot be used to amortize thememory access latency,
as they are executed in tiles sequentially.

Motivated by the drawbacks of runtime reallocation, we pro-
pose to keep the thread arrangement in the GPU’s device mem-
ory to avoid repeated dynamic scheduling, and achieve more ef-
fective work stealing. In particular, we adopt a hybrid strategy,
i.e., when consuming the frontier array and expanding the corre-
sponding outdegrees in a multi-threaded manner, we employ the
techniques described in Section 5.1 to split the long outdegree ar-
ray to tiled partitions with a specific size as well as suitable to the
configuration of the GPU’s thread group. Further, we keep the on-
line task reallocation results, i.e., the tiled partitions of a frontier,
in the GPU’s device memory, as the running context of an auxil-
iary structure. Hence, when we revisit the outdegrees of a certain
node, there is no need to arrange them dynamically again.

When expanding frontiers, we conduct two steps, as shown in
Algorithm 3. First, we expand the tiled partitions of the frontier
in the GPU’s device memory (lines 2-7). Second, similar to Algo-
rithm 2, CGs consume the tiles with a corresponding size from the
tiled partition array, and adjust the size of CGs through continuous
partitioning until termination (lines 9-17). We reuse the example
in Figure 3 for explanation, and the details of the aforementioned
process are illustrated in Figure 4 (b). There are still 16 threads cor-
responding to 16 frontiers, but this time, we first expand the tiles
of the frontiers to the device memory. Next, all threads form CGs
in blocks, and start to consume tiles from the tiled partition array
and partition themselves continuously. Because the tiled partitions
are expanded to the device memory, they are visible to the whole
GPU. Thus, any CGs with an appropriate size, rather than only
the one corresponding to the frontier, can consume the tiled parti-
tions. It is clear that compared with the case shown in Figure 4 (a),
this is equivalent to flattening the tiled partitions to process in ad-
vance (as discussed above) and making them visible to the whole
device. Then the aforementioned problems of SM load imbalance
and memory pipe not being fully occupied can be solved.

5.3 Discussions
A GPU consists of a large number of simplified cores with poor
single-threaded performance and conditional branching capabil-
ity. When dealing with the sparsity and the skewed distribution of
large graphs, an imbalanced load caused by coarse-grained work-
load mapping leads to amplified performance loss. Therefore, the
major concerns to achieving efficient parallel graph processing are
how to arrange the irregular graph traversal into independent sub-
tasks and schedule these subtasks to multiple processors. In this
section, we mainly focus on how SAGE deals with these two con-
cerns, that is, the proposed Tiled Partitioning and Resident Tile Steal-
ing, respectively. To showcase the benefits from the design ofSAGE,
we compare it with approaches proposed by existing studies.
Tigr [37] preprocesses graphs data into uniform-degree tree

transformation (UDT), which reduces the skewed distribution of
graphs by introducing intermediate nodes to split large outdegrees



Algorithm 4 Tile Access Sampling
1 procedure filter(tile, frontier, neighbor)

2 __shared__ tile_neighbors[]

3 tile_neighbors[tile.thread_rank()] := neighbor

4 tile.sync()

5 my_sector = neighhor / SECTOR_WIDE

6 cnt := 0

7 for i in tile.size() do

8 if tile_neighbors[i] / SECTOR_WIDE = my_sector then

9 cnt++

10 end_if

11 end_for

12 locality[frontier] += cnt

13 // application specific filtering implementation

14 end_procedure

based on fixed cutpoints. In addition to the overhead introduced by
preprocessing and auxiliary structures, a predefined degree split-
ting rule needs a case-by-case fine-tuning for different hardware
and graphs. B40C [30] classifies frontiers into three buckets based
on the number of outdegrees and then handles frontiers in each
bucket separately. Therefore, tasks in different buckets can be pro-
cessed by three different concurrency schemes configured in ad-
vance, i.e., letting larger thread groups handle frontiers with larger
outdegrees and vice versa. The thread task rescheduling relies on
synchronizations, and can only steal workloads in the same SM
due to the device limitation.

In the proposed SAGE’s Tiled Partitioning, it does not first par-
tition tasks by predefined strategies as in most existing studies.
Instead, it dynamically adjusts the sizes of thread groups (from
large to small) in the runtime and consumes a part of workloads
only when it can fully utilize the threads. In this process, irregular
loads are consumed in a fine-grained manner and high utilization
is ensured. Meanwhile, the preprocessing-free scheduling mecha-
nisms should be conducted in the runtime. Such online schedul-
ing for high-quality load balancing tends to rely heavily on condi-
tional branching and synchronization, which are also very costly
on GPUs. Hence, we propose a lightweight Resident Tile Stealing
mechanism to keep the intermediate results of tiled partitioning in
the device memory and the intermediate results are used for run-
time scheduling. We include Tigr and B40C as baselines in the
evaluation, and the benefits of SAGE’s design on task partitioning
and stealing are empirically validated in Section 7.

Further, in SAGE, the memory access of graph processing is con-
ducted by thread groups with specific sizes, i.e., concurrent tile ac-
cess, which provides opportunities for further optimizations. Par-
ticularly, we apply a tile alignment strategy, i.e., making tiled par-
titions aligned with the physical memory sectors to optimize the
concurrent memory access. In Section 6, we also propose Sampling-
based Reordering to further improve the memory efficiency.

6 SAMPLING-BASED REORDERING
In Section 5, we mainly discuss the expansion step shown in Fig-
ure 2. In this section, we focus on the next step after the outdegrees
of frontiers are expanded, i.e., the filtering step, and discuss its per-
formance concerns. In the filtering step, we need to decide if the
current neighbor node will become an active node, i.e., the frontier
in the next iteration, through accessing and updating the value of
the node, e.g., the visited label of BFS. The performance concern
mainly lies in the memory/cache performance degradation due to

the lack of locality in the outdegree index distribution, as discussed
in Section 3.2. Most existing approaches are based on reordering-
based graph preprocessing, i.e., to generate a new replica of the
graph by reassigning indices to the nodes with a bijection map-
ping beforehand, and then conduct the graph analysis on the re-
ordered replica to improve the locality of the outdegree indices
and boost the access efficiency. As for the preprocessing, the actual
memory access behaviors are hard to be known in advance; hence,
reordering-based preprocessing approaches have to make certain
assumptions about the actual memory access behaviors and build
cost models to preprocess the graph data.

In SAGE, we propose the Sampling-based Reordering that opti-
mizes the node indices for higher memory access locality; nonethe-
less, SAGE adjusts the node indices in the runtime instead of rely-
ing on preprocessing. Based on the discussion in Section 5, SAGE
handles the node outdegree array based on tiled partitions and
keeps them in memory for reuse so that the access patterns that
adapt to the current hardware are determined throughout the run-
time. Hence, we can quantify the access behaviors to the graph
representation more directly and precisely, and optimize the mem-
ory efficiency by adjusting the node indices. In SAGE, the reads
on the graph data from graph applications are concurrent mem-
ory access in tiles. For tile<m> that executes reads on the data of
consecutive m outdegrees as neighbors of the frontier, the actual
costs of memory reads correspond to the number of sectors that
are occupied by the memory reads, i.e.,

count

(
distinct

({⌊
neighbors of tile

sector_wide

⌋}))
As for the memory accesses specific to a certain graph application
scenario, given T as the collection of all tiles accessed and a bijec-
tion 𝜎 : 𝑉 → 𝑉 , the reordering that achieves the optimal memory
efficiency, i.e., the minimum sector access is

argmin
𝜎

∑
tile∈T

count

(
distinct

({⌊
𝜎 (neighbors of tile)

sector_wide

⌋}))
TheoRem 6.1. Calculating the permutation 𝜎 that achieves the

minimum sector accesses is NP-hard.

PRoof. We construct a special case that can be reduced to amin-
imum linear arrangement (MLA) problem with binary distancing.
Given a graph 𝐺 = (𝑉 , 𝐸), for each (𝑢, 𝑣) ∈ 𝐸, we construct a
tile<2> including 𝑢 and 𝑣 . Let 𝑘 = sector_wide. This case is then
equivalent to solve:

argmin
𝜎

∑
(𝑢,𝑣) ∈𝐸

𝑓 ( |𝜎 (𝑢) − 𝜎 (𝑣) |), 𝑓 (𝑥) =
{

0 if x < k,
1 otherwise.

MLA is a classic NP-hard graph problem [20] and its variant of
binary distancing with a finite 𝑘 is proved to be equivalent to the
original MLA [34]. □

Due to NP-hardness, we propose a heuristic, i.e., Sampling-based
Reordering to derive the permutation. Algorithm 4 demonstrates
the main idea that we sample the tile access and for each time of
tile access, the number of intra-tile neighbors that are located in
the same memory sector with each other is counted as the locality
measurement. Since the sampling mainly operates within shared
memory, the cost is lightweight. Based on the access statistics of
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Figure 5: An example of sampling-based reordering.

a tile, we try to search a new index for the tile, which enables
the node to have more intra-tile neighbors within the same sec-
tor. SAGE’s sampling-based memory access optimization by re-
ordering consists of three stages. In each stage, we will sample tile
access to collect the corresponding statistics in order to conduct
the reordering. In particular:
• Stage 1: for each node, calculate the number of intra-tile nodes

that fall into the same sector, as the measure of locality.
• Stage 2: find a potentially better index for each node by binary

search, which may lead to higher locality.
• Stage 3: calculate the actual locality changes based on the new

index obtained in Stage2.
Each time when Stage 3 is finished, we will update the indices of
the nodes whose localities are increased, in the graph representa-
tion. We repeat this process of three stages round by round, and
optimize the indices of the nodes according to the actual memory
access behaviors, so that the memory efficiency can be boosted
gradually until convergence to a relatively high level.

We illustrate an example in Figure 5 on how to collect statistics
of the memory access behaviors through investigating the nodes
that are processed by tile concurrently in the filtering step, and
then improve memory efficiency by reordering. In this example,
suppose that in each stage, the memory accesses are the same, i.e.,
four tile<4>, and one sector can contain values of four nodes.
Stage 1: In Figure 5 Stage 1, we sample the access consisting of 4
tile<4> that read values of the corresponding neighbors in tiles.
For instance, when tile3 is accessed, although only 4 nodes’ val-
ues are needed, 12 nodes’ values are actually loaded from memory,

Table 1: Statistics of Datasets
Dataset Category |𝑉 | |𝐸 | |𝐸 |/|𝑉 |
uk-2002 Web 18.5M 298M 16.1
brain Biology 784K 267M 683

ljournal Social Network 5.3M 79M 14.9
twitter Social Network 41.6M 1.46B 35.1

friendster Social Network 65.6M 1.81B 27.5

since the desired values fall in 3 sectors (sector0,1,2). Thereby, we
increase the localities of node-8 by “1”, meaning that we count the
event that one node (node-9) within a tile access loads the same
sector (in yellow). According to tile access in this stage, for each
node, we hereby count the total number of intra-tile neighbors that
are in the same memory sector, as the locality measure of its index.
Stage 2: When the sampled tile access in Stage1 reaches a prede-
fined sampling threshold, we will turn to Stage2. In this stage, for
each node, we try to search a better index so that if the node uses
this new index, the intra-tile locality can be increased compared
with that in Stage1. We look for potentially better new indices by
binary search. Specifically, starting from the whole interval, for
each step of the binary search, we sample and measure which half
area has more intra-tile nodes till the searching range converges to
one sector. In this example, we only consider node-8 for simplicity.
In Figure 5 Stage 2-1, the first step of the binary search, the search
area is initialized to [0, 15]. We first evaluate which half area ([0,
7] in red or [8, 15] in yellow) has more intra-tile nodes of node-
8. Then, in Stage 2-2, the binary search completes, indicating that
sector0 is a potentially better index for node-8.
Stage 3: Similar to Stage 1, we measure the actual locality of the
new index obtained in Stage 2. In the example, if node-8’s index is
changed to 3, the locality of node-8 will increase from 1 to 6. Ac-
cording to the locality comparison between two indices calculated
in Stage 1 and Stage 3, we decide whether to change the index of
the current node and update the graph representation.

The complexity of this reordering consists of two parts, namely
sampling stages, and updating the graph representation after Stage
3. The sampling is performed along with the tile access, that is, if
we collect 𝑇 tiles in each stage, the complexity is 𝑂 (log |𝑉 | · |𝑇 |).
We note that after Stage 3, we will have an array of the expected
index of each node, which could contain duplicated index values
of different nodes or have discontinuous index values. We then
sort the expected index array to determine the actual index order.
To update the graph representation, we adopt bb_segsort [17]
for the efficient index replacement on the GPU. Sorting is a GPU-
friendly primitive that can be performed efficiently by radix sort
in parallel with the complexity 𝑂 (𝑘 · 𝑛), where 𝑘 is considered as
a constant. Hence, the complexity of this updating is 𝑂 (|𝑉 | + |𝐸 |).

7 EXPERIMENTAL EVALUATION
In this section, we demonstrate the empirical performance of our
proposedSAGE. In Section 7.1, we introduce the experimental setup.
In Section 7.2, we compare our proposal with different baselines in
three representative architecture scenarios in order to validate the
effectiveness and generalizability of SAGE. Further, in Section 7.3,
we investigate the internal mechanisms of SAGE and conduct an
ablation study to verify the impact of our proposed optimizations.
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Figure 6: Comparison between SAGE and reordering methods.

7.1 Experimental Setup
Datasets.We collect five real-world graph datasets of different cat-
egories and in different scales for experimental evaluation. The de-
tailed statistics of these datasets are summarized in Table 1.
• uk-2002 is a web graph dataset collected in 2002. It is crawled

by UbiCrawler [4] from the web pages that belong to .uk domain.
• brain is a biology graph dataset that records the link struc-

ture between neurons of human beings’ brain. This dataset is
collected by NeuroData1 and provided by NetworkRepository2.

• ljournal is a social network graph dataset that records the
friendship relationship of LiveJournal3. It is a free online blog
service that involves millions of users. This dataset is a snapshot
collected in 2008 [7].

• twitter contains the relationship between users and follow-
ers in Twitter4.This dataset is a snapshot collected through Twit-
ter API by [24] in 2010.

• friendster is a dataset collected by [52].This dataset records
the friend relationship of a social and online gaming network5.

Baselines. We compare SAGE with existing reordering methods
and parallel graph processing (PGP) approaches.

Reordering Methods:
• RCM [10]: A permutation proposed to reduce the bandwidth of

an adjacencymatrix, as a variant of Cuthill-McKee algorithm [8].
• LLP [5]: A permutation determined by the layered label propa-

gation algorithm.
• Gorder [49]: A permutation given based on a defined locality

score Gscore that is maximized by greedy strategies and partial
maxTSP calculation on sliding windows.

1https://neurodata.io/data/
2http://networkrepository.com/bn-human-Jung2015-M87113878.php
3https://www.livejournal.com/
4https://twitter.com/
5http://www.friendster.com

PGP Approaches:
• Ligra [42]: The state-of-the-art CPU-based parallel graph ana-

lytic framework for NUMA-based multiprocessor machine.
• Tigr [37]: A novel graph preprocessing solution of irregular

graph transformation for GPU-friendly graph processing.
• Gunrock [48]: A novel GPU-based graph processing platform.
• Groute [3]: A novel GPU-based asynchronous framework tai-

lored for multi-GPU graph processing.
• Subway [38]: A novel GPU-based framework tailored for out-

of-GPU-memory graph processing.
• B40C [30]: A novel graph traversal method on GPUs, which in-

troduces three predefined strategies in order to handle nodes
with different scales of neighbors.

• SAGE: The proposed self-adaptive graph traversal on GPUs.

Experimental Environment.Theexperimental evaluation results
are conducted on a GPU Server equipped with 2 × Intel Xeon Gold
6140CPUs (2.3Ghz, 36 cores), 384GBmainmemory, and 2×NVIDIA
QUADRO RTX 8000 GPUs (4608 cores, 48 GB device memory). All
source codes are compiled by GCC-7.5 and CUDA 11.0 in C++14
standard with -O3 under Ubuntu 18.04.4 LTS. OPENMP is used to
support parallel primitives for Ligra. NVIDIA Nsight Compute
2020.1 is used as the profiling tool of GPU’s kernels.

7.2 Comparison Result Analysis
We present the experimental results between SAGE and the base-
line methods introduced in Section 7.1, and then analyze and dis-
cuss the results according to different architectural scenarios: single-
GPU, out-of-core, and multi-GPU. We demonstrate an extensive
evaluation in the single-GPU scenario in three graph applications
(i.e., BFS, BC, and PR), and only discuss BFS performance for the
other scenarios due to limited space and their orthogonality. For
BFS and BC, the performance is measured by randomly selected
source nodes. All experiments are repeated 100 times to calculate

https://neurodata.io/data/
http://networkrepository.com/bn-human-Jung2015-M87113878.php
https://www.livejournal.com/
https://twitter.com/
http://www.friendster.com
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Table 2: Time Consumption of Reordering (sec.)
Dataset RCM LLP Gorder SAGE per round
uk-2002 89.2 313.4 45.1 0.1533
brain 33.6 236.7 171.7 0.9932

ljournal 17.4 135.5 103.6 0.0394
twitter 523.5 2737.1 12615.5 1.2894

friendster 654.6 4343.5 15207.7 1.4956

the average. We use the graph traversal speed, i.e., billion edges
per second to measure the performance of graph data processing.
Single-GPU Scenario. We evaluate the most common scenario
for GPU-accelerated graph analysis, where only one GPU is used
and the entire graph data is loaded into the GPU’s device mem-
ory.We conduct two sets of experiment: (1) comparison between
SAGE and reorderingmethods; (2) comparison betweenSAGE
and PGP approaches.
(1) For all compared reordering methods, we generate the corre-
sponding reordered graph replicas and apply SAGE traversal on
these replicas to test the influence of different orders on the graph
traversal performance.The corresponding experimental results are
illustrated in Figure 6. Because the Sampling-based Reordering in
SAGE is round after round, in Figure 6, the bar with a subscript
of 1 denotes the execution based on the original order, and that
with a subscript of 100 represents the execution after 99 rounds
of reordering the node indices. The sampling threshold is |𝐸 |, and
thus the stage will be switched when the graph representation has
responded to the queries of every |E| edges. The time consump-
tion of each reordering method on all evaluated datasets is summa-
rized in Table 2. Through the comparison results, we find that in
brain and uk-2002, in most cases, different reordering-based
methods do not exhibit much difference from the original order
in terms of the graph traversal performance. Nonetheless, in the

social network graphs, reordering methods exhibit a relatively re-
markable improvement (the largest improvement is in twitter,
i.e., up to 36.1%, 80.5%, and 109.3% for the three applications respec-
tively). Among the three evaluated reordering baselines (except
SAGE), LLP shows a significant improvement in PR, because LLP
is based on local clustering and its optimization goal aligns with
the memory access pattern of PR. Nonetheless, Gorder works
best inmost cases throughmaxTSP computation, which effectively
improves the locality of memory addresses when traversing graph
data. However, the preprocessing in Gorder is time-consuming.
In contrast, SAGE effectively optimizes the node order for mem-
ory efficiency in a lightweight manner, through sampling the tile
access. From the experimental results, we can see that the itera-
tive Sampling-based Reordering converges fast, i.e., only takes a
few rounds to achieve competitive performance compared with
Gorder. Particularly, takingtwitter in BFS as an example, com-
paredwithGorder,SAGE’s Sampling-based Reordering can achieve
95.6% graph traversal speed in the 5th round with a negligible cost
(i.e., 4.95 seconds); and in the 94th round, SAGE catches up with
Gorder, meaning that Sampling-based Reordering achieves the
same performance at the cost of only 0.95% of Gorder’s. Mean-
while, such cost is introduced gradually in the runtime, rather than
a large start-up latency caused by preprocessing.

Further, existing reordering methods only assume static graphs,
which means that once the graph data is updated, e.g., in dynamic
graph analysis scenarios, the effects of preprocessing become in-
valid and the preprocessing needs to be re-executed. In contrast,
SAGE can be directly applied to dynamic graph scenarios as long
as the CSR format is used to store the graphs. As our proposed
optimizations are fairly lightweight, once the CSR receives new
graph updates, we can reorder the graph format quickly by invok-
ing Sampling-based Reordering to speed up subsequent graph pro-
cessing tasks.



(2) The experimental results between SAGE and PGP approaches
are shown in Figure 7. In this comparison, to clarify the interaction
between reordering and PGP approaches, we evaluate both scenar-
ios with and without reordering. We apply Gorder to all methods
except SAGE, since Gorder performs well for optimizing graph
processing performance across different applications and graph
datasets as discussed above.

We first analyze the graph processing performance across differ-
ent approaches and datasets (comparing figures horizontally). Ac-
cording to the comparison between Ligra and other GPU-based
methods, we can confirm that GPU-accelerated graph computation
can boost the performance by a large margin.Through the compar-
ison results across different datasets, we find that the performance
of different methods is related to the types of graph data. Out of
the five datasets, for each graph application, it is always the fastest
to traverse brain because this graph dataset has a clear hierarchi-
cal structure and the distribution of nodes’ outdegrees tends to be
uniform. In uk-2002, each method also demonstrates a relatively
high traversal speed. This is because the web graph is collected by
crawlers following hyperlinks and hence, the obtained graph sub-
set has a relatively regular hierarchy as well. Finally, as for the so-
cial network graph datasets including ljournal, twitter, and
friendster, the traversal speed of each method drops to some
extent. The reason is that the distribution of such graph datasets
is highly skewed, which poses greater challenges for parallel pro-
cessing on GPUs. We can clearly find that due to Tigr’s UDT pre-
processing tailored for irregular graphs, i.e., transforming irregular
graphs to a more regular structure through adding auxiliary struc-
tures, Tigr has an obvious advantage in terms of performance
in social network graphs. However, in brain that is a naturally
highly regular graph, Tigr’s performance drops severely. This is
because Tigr’s preprocessing strategy cannot bring more perfor-
mance improvement when transforming graphs that are already
highly regular, e.g., brain. Due to adding auxiliary structures, an
excess of overhead is introduced, which degrades the overall per-
formance. Based on the discussion above, the irregularity of graphs
is hence a major factor that influences the performance of GPU-
based graph processing and is a main concern of further improving
the performance of graph processing as well.

For different applications (comparing figures vertically), there
are two factors affecting the overall performance, i.e., traversal pat-
tern and atomicity. Among the three applications, BFS and BC are
based on local traversal, i.e., the frontiers of each iteration are dif-
ferent subsets of V. In contrast, for PR, it is based on global tra-
versal, i.e., the frontiers of every iteration are the entire V. Hence,
applications based on local traversal lead to more irregular work-
loads, which reflects a more significant performance difference be-
tween different approaches. Another performance factor is atomic-
ity. In particular, BFS does not depend on atomic operations when
executed in parallel (dirty writes do not affect the correctness of
the results); however, BC and PR rely on atomic aggregation. This
makes the locality of graphs a double-edged sword that affects per-
formance, i.e., the improved locality leads to better memory load
efficiency but increases the conflict of atomic operations.
SAGE exhibits superior performance. In particular, among all

the evaluated applications and different kinds of graph datasets,
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Figure 8: Comparison between SAGE and Subway in the out-
of-core scenario.

SAGE consistently achieves the best or a highly competitive per-
formance compared with the best-performing approach. This vali-
dates that the proposed SAGE is robust to different workloads and
practical for awide range of applications, whereas none of the base-
line methods shows competitive performance in all scenarios. Fur-
ther, this demonstrates the versatility of SAGE, and confirms that
when processing irregular graph processing workloads, Tiled Par-
titioning and Resident Tile Stealing in SAGE adapt to the graph data
and the hardware without any preprocessing, while fully making
use of GPU’s computing power in a wide range of situations.
Out-of-core Scenario. Next, we explore the out-of-core scenario
where the graph data is not stored in the GPU’s device memory
and needs to be loaded from the external memory. We evaluate the
most common out-of-core scenario, in which the GPU needs to ac-
cess data from the host memory via PCIe. In this case, the main
bottleneck of graph traversal performance lies in the PCIe band-
width, i.e., the actual performance depends on how effectively the
limited external memory bandwidth is utilized. We use Subway
as a baseline method in the out-of-core scenario with the compari-
son results demonstrated in Figure 86. Subway is designed for ef-
fectively utilizing the limited PCIe bandwidth. During graph pro-
cessing, it identifies the active edges in the current computation
and preloads the desired subgraph to the local device memory in
an asynchronous manner. Such “planned” regular access can con-
tribute to a relatively high actual bandwidth and the asynchronous
preloading can decrease the memory access latency. Through the
comparison results, we find thatSAGE can still achieve satisfactory
performance in the out-of-core scenario. The reason is that when
SAGE processes irregular graphs, the scattered memory access pat-
terns are avoided due to Tiled Partitioning, and the communication
efficiency with external memory is further improved due to tile
alignment. Meanwhile, Resident Tile Stealing can increase the oc-
cupancy of the external memory pipeline and therefore, decrease
the amortized memory access latency.
Multi-GPU Scenario. Finally, we discuss the multi-GPU scenario
in which for a single task, multiple GPUs are used for collabo-
rative processing. The experimental results with multiple GPUs
are shown in Figure 9. In the multi-GPU scenario, most existing
methods choose to preprocess the graph data, conduct graph par-
titioning and therefore, achieve a better task dispatching. We use
multi-GPU baselines Gunrock and Groute, both of which sup-
port the pre-partitioning of graph data based on metis [22]. In
this way, we compare the two situations (with and withoutmetis)

6The open-source implementation of Subway will crash in brain.
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denoted with different patterns in Figure 9. We note that metis
is time-consuming and its costs are excluded in the reported per-
formance. Further, SAGE is designed without any preprocessing
mechanisms. From the experimental results, we can see that all
evaluated methods are able to achieve competitive or surpassing
performance when using two GPUs with doubled device memory.
SAGE achieves the best performance, and particularly in the graph
datasets such as brain and uk-2002.

One can see that using two GPUs does not always lead to bet-
ter performance, and may perform worse in some cases. However,
it can support larger graphs due to the increased size of the de-
vice memory. GPU-accelerated graph computation is based on it-
eratively processing frontier arrays. The computation time of each
iteration is short and the data needs to be synchronized after each
iteration, which causes the communication overhead betweenmul-
tiple GPUs to be high. The efficient graph analysis with multiple
GPUs remains an open and challenging research direction.

7.3 Ablation Study
To validate the impact of our proposed techniques, we apply all
these techniques, i.e., Tiled Partitioning, Resident Tile Stealing, and
Sampling-based Reordering, incrementally to test their influence on
the performance. The experimental results are shown in Figure 10.
Meanwhile, Table 3 shows the overhead of Tiled Partitioning, i.e.,
the percentage out of the total running time, among all datasets
and applications. Among different datasets, we have the follow-
ing observations. To start with, Tiled Partitioning exhibits a large
impact in all datasets, which again confirms that in GPU-based
graph computation, how to effectively handle skewed neighbor
distribution to improve the hardware utilization, is a main con-
cern. From the results, we observe that Tiled Partitioning exerts
a highly remarkable influence on twitter. The reason is that
although ljournal and friendster are also social network
graphs, they represent private friendship, whereas twitter is a
public social network, following a popular user does not need a per-
mission. As a result, the skewness of twitter is more extreme

Table 3: Tiled Paritioning costs out of running time (msec.)
Dataset BFS BC PR
uk-2002 1.6/14.1 (11%) 2.9/28.7 (10%) 0.6/7.1 (8.5%)
brain 1.1/16.2 (7%) 2.4/37.4 (6%) 0.1/5.9 (1.7%)

ljournal 1.3/7.0 (19%) 2.0/32.9 (6%) 0.2/10.4 (2.0%)
twitter 6.7/63.2 (11%) 8.7/540.8 (2%) 2.0/415.7 (0.4%)

friendster 15.4/99.3 (16%) 22.5/791.5 (3%) 2.5/718.1 (0.3%)

with the |outdegrees| of some nodes up to several millions. With-
out proper handling, these super nodes will result in poorer over-
all performance. Resident Tile Stealing flattens the tiles and makes
them able to be stolen by all SMs, rather than being processed by
only the SM corresponding to the frontier; hence, it raises the par-
allelism to a large extent. Resident Tile Stealing achieves an obvious
performance improvement in both brain and twitter but due
to different reasons. As for the former dataset, we think it has a
large average |outdegrees|, so Resident Tile Stealing can increase
the parallelism through flattening tiles in order to achieve lower
amortized memory access latency. As for the latter dataset, due to
the extremely skewed graph data distribution, Resident Tile Steal-
ing solves the inter-SM load imbalance problem and thus, boosts
the hardware utilization. The impact of Sampling-based Reordering
has also been discussed above. In particular, for social network
graphs (especially twitter and friendster), it can achieve
a relatively larger improvement, because such data has more po-
tential to raise the locality of accessed memory addresses through
assigning a new order to the nodes.

8 CONCLUSION
In this paper, we introduce SAGE, a graph processing framework,
specific to high performance and usability of graph analysis on
GPUs. First, we propose Tiled Partitioning and Resident Tile Steal-
ing, to make the graph processing self-adaptive to the hardware
and the graph data, without the need for any preprocessing. Sec-
ond, due to usage of the tile structure, we further optimize the
memory efficiency of accessing graph data by Sampling-based Re-
ordering. Finally, we evaluate the performance and applicability of
the proposed SAGE through extensive experiments in representa-
tive graphs and application scenarios for three graph applications.
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