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ABSTRACT
Subgraph enumeration is important for many applications
such as network motif discovery and community detection.
Recent works utilize graphics processing units (GPUs) to
parallelize subgraph enumeration, but they can only han-
dle graphs that fit into the GPU memory. In this paper, we
propose a new approach for GPU-accelerated subgraph enu-
meration that can efficiently scale to large graphs beyond the
GPUmemory. Our approach divides the graph into partitions,
each of which fits into the GPU memory. The GPU processes
one partition at a time and searches the matched subgraphs
of a given pattern (i.e., instances) within the partition as in
the small graph. The key challenge is on enumerating the in-
stances across different partitions, because this search would
enumerate considerably redundant subgraphs and cause the
expensive data transfer cost via the PCI-e bus. Therefore, we
propose a novel shared execution approach to eliminate the
redundant subgraph searches and correctly generate all the
instances across different partitions. The experimental evalu-
ation shows that our approach can scale to large graphs and
achieve significantly better performance than the existing
single-machine solutions.
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1 INTRODUCTION
Given a data graph G and a pattern graph P , subgraph enu-
meration is to find all subgraphs in G that are isomorphic to
P (i.e., instances of P ). Subgraph enumeration is important in
various domains, such as network motif discovery [12, 27],
community detection [17, 40], and frequent subgraph min-
ing [25, 38]. Thus, there have been a lot of studies on im-
proving the performance of subgraph enumerations (such
as [8, 23, 26, 34]). Since the sequential solutions for sub-
graph enumeration are prohibitively slow [2, 8, 14, 24, 34],
many works adopt the distributed and parallel solutions
(either on the cluster [22, 23, 29, 35] or on the graphics pro-
cessing units (GPUs) [26, 37]). The recent works [26, 37]
parallelize subgraph enumeration on GPUs and achieve sig-
nificant speedups. However, these works assume the sizes of
data graphs cannot exceed the GPU memory, which greatly
restricts the application scope.
To overcome the limit of GPU memory, a direct solution

is to store the data graph in main memory and extend the
existing approaches [8, 23, 26, 29, 34, 37] to enumerate sub-
graphs by loading the graph into GPUs on demand. Since
the data access to main memory is via a rather slow PCI-e
bus between the host (CPUs) and device (GPUs), this direct
solution can incur excessive communication overheads over
PCI-e and hence lead to poor performance.

In this work, we propose partition based enumeration (PBE),
a new approach for GPU-accelerated subgraph enumeration.
We store the data graph in main memory in the form of
graph partitions, each of which fits into the GPU memory.
The GPU processes one partition at a time and searches all
the instances within the partition as in the case when the data
graph fits into the GPU memory. Therefore, the instances
within each partition can be enumerated efficiently without
accessing the data graph in main memory.
With the efficient intra-partition subgraph enumeration,

the key challenge is searching the instances across differ-
ent partitions, because this search would enumerate consid-
erably redundant subgraphs and cause the expensive data
transfer cost via the PCI-e bus. To prune the search space
of finding the instances across different partitions, we need
to enumerate cross-partition subgraphs to map the vertices

https://doi.org/10.1145/3318464.3389699
https://doi.org/10.1145/3318464.3389699


of the pattern graph in multiple match orders (Section 3.2).
However, the same subgraph can be simultaneously mapped
to different match orders. If we follow the existing works [8,
23, 26, 29, 34, 37] to enumerate subgraphs for one match
order at a time, a large number of cross-partition subgraphs
would be repeatedly enumerated for multiple match orders.
As searching each cross-partition subgraph has to access the
data graph in main memory, this redundant enumeration
can significantly increase the PCI-e communication and thus
degenerates the performance.

To reduce the communication overhead of inter-partition
subgraph enumerations, we propose a novel shared execution
approach that can group multiple match orders together and
enumerate subgraphs for one group at a time. In this way,
the enumerated subgraphs are shared for a group of match
orders and thereby the redundant enumeration is avoided.

For an efficient and effective shared execution, we have ad-
dressed the following two challenges. First, selecting optimal
match orders that minimize the execution cost is challeng-
ing. We prove that this problem is NP-hard, and devise a
heuristic method that can not only efficiently generate the
match orders but also achieve effectiveness to optimize the
execution cost. Our theoretical analysis shows that the ex-
ecution cost achieved by our heuristic method is bounded
by the optimal cost multiplied by a small factor. The second
challenge for shared execution is a sound algorithm to faith-
fully enumerate the desired instances. While most existing
works [23, 26, 29, 37] use one match order to search all in-
stances, our shared execution employs multiple match orders
to enumerate only the instances across different partitions.
Thus, we develop an algorithm that is provably correct to
generate all the instances across different partitions.

Hereby, we summarize the contributions as follows.

• We introduce a new approach for GPU subgraph enu-
meration that can efficiently scale to large data graphs
beyond the GPU memory.

• We propose a shared execution approach to search the
instances that cross different partitions. The shared
execution can avoid the redundant searches among
multiple match orders.

• The experimental results show that our approach on a
single machine can scale to large graphs and achieve
significantly better performance than the existing single-
machine (CPUs and GPUs) baselines.

The remaining part of this paper is organized as follows.
Section 2 introduces the preliminaries and related works
for subgraph enumeration. Section 3 provides an overview
of our approach. Section 4 presents the design of shared
execution. The implementation of inter-partition search is
illustrated in Section 5. Section 6 reports the experimental
results. Finally, Section 7 concludes this work.

2 PRELIMINARIES AND RELATEDWORK
2.1 Definitions and Notations
A data graph G is defined to be an undirected, unlabeled,
and connected graph. A pattern graph P is also undirected,
unlabeled and connected. For a graph д, the vertices and
edges of д are denoted as V (д) and E(д). We call the vertices
V (G) and edges E(G) in the data graph as the data vertices and
data edges respectively. Correspondingly, we have pattern
vertices V (P) and pattern edges E(P) for the pattern graph.
Normally, we use u and v to denote the pattern vertex and
data vertex respectively. For a vertex v ∈ V (G) (u ∈ V (P)),
the adjacent list of v is denoted as N (v) (N (u)). GivenG and
P , subgraph enumeration is defined as follows.

Definition 1 (Subgraph Enumeration). A graph д is
isomorphic to a pattern graph P , if there exists a bijective
mapping f : V (P) → V (д), such that (u1,u2) ∈ E(P) if and
only if (f (u1), f (u2)) ∈ E(д). Given the data graph G and
pattern graph P , subgraph enumeration finds all subgraphs of
G that are isomorphic to P .

Definition 2 (Search seqence). Given the pattern graph
P , the search sequence π is a permutation of the pattern vertices
V (P) that reflects the order in whichV (P) are matched. π (i) is
the i-th vertex in π . When 1 ≤ i ≤ j ≤ |V (P)|, π [i : j] denotes
the set of vertices {π (k)|i ≤ k ≤ j}. Given π , if π (i) = u, the
position of u on π is π−1(u) = i .

To enumerate all isomorphic mappings, which we call
instances, we would follow a search sequence to iteratively
match each pattern vertex. Before all pattern vertices are
matched, we maintain an isomorphic mapping f from some
pattern vertices to the data vertices. Such a mapping is called
the partial instance. To formally define the partial instance,
we introduce the induced subgraph. A graph д1 is an induced
subgraph ofд2 on the vertex setU ⊂ V (д2) ifд1 has the vertex
set V (д1) = U and the edge set E(д1) such that ∀v1,v2 ∈ U ,
if (v1,v2) ∈ E(д2), then (v1,v2) ∈ E(д1). We denote such an
induced subgraph д1 as д2(U ).

Definition 3 (Instance). An instance of P is an isomor-
phic mapping f : V (P) → V (д), where д is a subgraph of G.
The set of instances of P is denoted as R(P).

Definition 4 (Partial instance). Given P and π , the
induced subgraph of P on π [1 : i] is denoted as Pπi , where
1 ≤ i ≤ |V (P)|. The instances of Pπi are the partial instances
of P , which are denoted as R(Pπi ).

Definition 5 (Graph partition). A partition plan Φ of
the data graph G is a division of V (G) into n disjoint vertex
sets. A partitionGi of the data graphG is an induced subgraph
of G on the i-th vertex set with 1 ≤ i ≤ n. The partition id
ρ(v) of a data vertex v is the label of Gi that v belongs to, i.e.,
ρ(v) = i .
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Figure 1: An example pattern graph P (left) and data
graph G (right).

Given a graph partition plan Φ, an inter-partition instance
f is an instance such that there exists ui ,uj ∈ V (P), ρ(f (ui ))
, ρ(f (uj )). An intra-partition instance f of P is an instance
such that ∀ui ,uj ∈ V (P), ρ(f (ui )) = ρ(f (uj )). We list the
frequently used notations throughput the paper in Table 1.

Example 1. Figure 1 shows an example data graph and
pattern graph. Given the search sequence (u0,u1,u2,u3), we
may generate the partial instances {(u0,v0), (u1,v1), (u2,v2)}
and {(u0,v2), (u1,v0), (u2,v3)}. Wemay find the instances f1 =
{(u0,v0), (u1,v1), (u2,v2), (u3,v3)} and f2 = {(u0,v2), (u1,v0),
(u2,v3), (u3,v4)}. A partition plan on G is indicated with the
dashed line. This plan divides V (G) into two vertex sets, i.e.,
{v3,v4} and {v0,v1,v2,v5}. Thus, both f1 and f2 are inter-
partition instances.

2.2 CPU-based Subgraph Enumerations
There are two lines of works for subgraph enumeration on
CPUs, i.e., single-machine and distributed solutions.
Single-machine subgraph enumeration. Built upon the
Ullman’s work [39], the existing works [2, 8, 14, 24, 30, 34, 41]
optimize the enumeration process with a selective search
sequence [8, 14, 30, 34] and various pruning techniques [2,
8, 12, 14, 15, 30, 46, 47] to reduce the search space. The prun-
ing techniques can be categorized into two types, namely
non-indexed and indexed approaches. The non-indexed ap-
proaches can apply a series of feasibility rules, e.g., the one-
look-ahead rule in VF2 [8], to invalidate unpromising par-
tial instances beforehand. The indexed approaches mostly
rely on the vertex labels to build the indexes that can prune
partial instances as early as possible [2, 14, 15, 30, 46, 47].
However, the indexed approaches may not help, because
subgraph enumeration focuses on unlabeled data graphs and
the maintenance overheads of index structures are usually
large [2, 14, 46, 47].
Distributed subgraph enumeration. To accelerate sub-
graph enumeration, many works rely on distributed frame-
works to achieve high parallelism [22, 23, 29, 35]. While the
distributed approaches seek for an efficient scale-out frame-
work, this paper focuses on a scale-up solution that exploits
the GPU power of a single machine. Thus, the distributed

Table 1: Frequently used notations.

Symbol Descriptions
P ,G pattern graph and data graph

V (д),E(д) vertex set and edge set of the graph д
N (v) adjacent list of v
π search sequence

Pπi
induced subgraph of P on the vertex set
π [1 : i]

f isomorphic mapping
ρ(v) partition id of data vertex v

R(P),Rr (P)
instances and inter-partition instances of
P

Qr = (S,H ) inter-partition query plan

S = {πi }
the set of all inter-partition search se-
quences

H = {Hl }
the set of prefix-equivalence groups at each
level l

[π ]
prefix-equivalence group with π as the rep-
resentative

H s the set of strict-equivalence groups

approaches can potentially take advantage of our solution
to boost the performances.

2.3 GPU-based Subgraph Enumeration
Recent works have seen interests in exploiting emerging
new hardware to accelerate data processing [4, 5, 42–45],
especially for graph processing on GPUs [13, 32, 33]. There
are two major previous studies on GPU subgraph enumer-
ation, i.e., NEMO [26] and GPSM [37]. They are both based
on a breadth-first search (BFS) approach, which is illustrated
in Algorithm 1. It proceeds by a level-by-level expansion of
partial instances to find all instances. At each level l > 0,
it executes two procedures, namely Compute andMateri-
alize. Compute iterates each partial instance f ∈ R(Pπl−1)
to compute a candidate set C(u | f ) of data vertices that can
match the pattern vertex u given f . To compute C(u | f ), we
first obtain a set of neighbors of u that are matched before u
(Line 6). We call such a set N+(u) the backward neighbors of
u. After that, given each partial instance f ∈ R(Pπl−1), for the
data vertices mapped to the backward neighbors N+(u), we
perform a set intersection operation over their adjacent lists
(Line 8). The result is a set C(u | f ) containing possible can-
didate data vertices. If any data vertex v ∈ C(u | f ) has been
mapped in f , v is removed from C(u | f ) (Line 9). With the
candidate set generated by Compute, Materialize extends
each partial instance f ∈ Pπl−1 to match one more pattern
vertex and generate the new partial instance (f ∪(u,v)) (Line
14). This new partial instance is added to R(Pπl ), which is a
set of partial instances matched to Pπl .



Algorithm 1 SubgEnum
Input: the pattern graph P , data graph G and search se-

quence π
Output: the instances R(P)
1: R(Pπ1 ) = {(π (1),v)|v ∈ V (G)}
2: for 2 ≤ l ≤ |V (P)|

3: C = Compute(π (l),π ,R(Pπl−1))
4: R(Pπl ) =Materialize (π (l),π ,R(Pπl−1),C)

5: procedure Compute(u,π ,R(Pπl−1))
6: N+(u) = {ui |ui ∈ N (u) ∧ π−1(ui ) < π−1(u)}
7: for f ∈ R(Pπl−1)

8: C(u | f ) = ∩∀ui ∈N+(u),v=f (ui ),N (v)
9: C(u | f ) = C(u | f ) − { f (ui )|ui ∈ f }

10: Return C
11: procedureMaterialize(u,π ,R(Pπl−1),C)
12: for f ∈ R(Pπl−1)

13: for v ∈ C(u | f )

14: Add (f ∪ (u,v)) to R(Pπl )
15: Return R(Pπl )

AlthoughNEMO andGPSM exhibit significant performance
improvements, they can only handle relatively small data
graphs that are stored in the device memory. In this work,
we seek to overcome this limitation and achieve efficient
GPU-accelerated subgraph enumeration.

2.4 Other Related Works
General graph processing systems. Graph partitioning
is widely used in general graph processing systems [6, 7,
9–11, 21], especially in distributed (e.g. PowerGraph [11])
and disk-based (e.g., GraphChi [21]) settings. These systems
propose efficient execution methodology to reduce the cross-
partition data accesses, but they are designed for iterative
graph processing applications, such as PageRank and BFS,
which maintain a small set of aggregated values. They are
not suitable for subgraph enumeration that can generate a
huge amount of intermediate result, which is significantly
(orders of magnitude) larger than the data graph itself.
Incremental subgraph matching. One way to view the
inter-partition search is to consider the inter-partition data
edges as a batch of newly inserted edges and then perform in-
cremental subgraph matching [1, 3, 18, 28]. To find the newly
generated instances, the delta subgraph framework [1, 3, 18]
issues one delta query Qe for each pattern edge e . Denote
the data graph before and after the edge insertions as G ′

and G respectively. The query Qe would map the pattern
edge e to the inserted data edges. For the other pattern edges,
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Figure 2: The overview of PBE.

it would match a subset of these edges over G ′ and the re-
maining overG . Note that the pattern edges used forG ′ and
G differ in each delta query. Thus, the intermediate results
generated for different delta queries are unable to be shared.
Our inter-partition search can exploit the sharing because
we would only match the pattern edges over G (Section 4).
This approach may cause duplicate instances, but they can
be easily avoided in execution (Section 5).

3 PARTITION BASED ENUMERATION
In this section, we first give an overview of PBE and then
illustrate the designs and issues for the inter-partition search.

3.1 Overview
PBE preprocesses the data graph by dividing the graph into
multiple partitions, each of which can fit into the device
memory. After that, the query processing workflow will
enumerate subgraphs for the given pattern graph.
Query processing. Figure 2 shows the query processing
workflow of PBE. Given the pattern graph P , the optimizer
first generates the query plan Q = (Qa ,Qr ), which consists
of the plans for the intra-partition search Qa and the inter-
partition search Qr . For the intra-partition search, the plan
Qa is one search sequence generated by following existing
works [14, 26, 34, 36]. We enumerate all orders of pattern
vertices and choose the order for Qa that minimizes the
execution cost. To search the intra-partition instances, we
load each graph partitionGi into GPUs. After that, the intra-
partition instances inGi are enumerated using Algorithm 1
without any host-device communication.

For the inter-partition search, the plan Qr is made up
of multiple search sequences and auxiliary data structures
to facilitate shared execution (Section 4.1). To search the
inter-partition instances, we apply the two-stage approach
(Section 3.2) that prunes all intra-partition instances by enu-
merating all data edges that cross different partitions, i.e.,
the dashed lines indicated in Figure 2. This can initialize
the inter-partition partial instances, which are matched to



multiple search sequences. To avoid the redundant subgraph
searches among multiple search sequences, our shared exe-
cution can group multiple search sequences and enumerate
cross-partition subgraphs for one group at a time (Section 4).
The details of inter-partition search are presented in Algo-
rithm 3. After both intra-partition and inter-partition search
terminate, the query processing workflow is completed.
Graph partitioning. To optimize the performance of query
processing, more workload should be offloaded to the intra-
partition search, since it can be executed efficiently without
the host-device communication. For this purpose, we use the
standard graph partition approach, i.e., METIS [19], which
seeks to minimize the number of inter-partition edges. With
METIS, the vertices are likely to connect to other vertices in
the same partition and there would be more intra-partition
instances. We partition the data graph such that each par-
tition together with the intermediate result (which would
be mentioned in Section 5) can fit into the GPU. Given the
data graph size |G |, GPU memory size д, and the memory
reserved for intermediate result θ , we set the number of par-
titions to be ⌈|G |/(д − θ )⌉. Note that the graph partitioning
is only executed in the preprocessing step, so it would not
affect the efficiency of query processing workflow.

3.2 Inter-partition Search
To enumerate all inter-partition instances, a straightforward
method is to adopt the existing approach (Algorithm 1), but
it can deteriorate to enumerating all instances including the
intra-partition ones. The reason is that only after all pattern
vertices are matched, i.e., when all the instances are found,
we can determine whether the enumerated partial instance is
inter-partition. Therefore, we are motivated for a new design
for the inter-partition search.
Two-stage approach. We proposes a two-stage approach,
which consists of the pruning stage and enumeration stage,
to efficiently enumerate inter-partition instances.
Pruning stage. In this stage, we enumerate all inter-partition
data edges (vi ,vj ) andmap them to each pattern edge (uk ,uw )
∈ E(P). This can prune all intra-partition instances and ini-
tialize the partial instances that cross different partitions.
For each generated partial instance, we call the first inter-
partition data edge (vi ,vj ) and pattern edge (uk ,uw ) prime
data edge and prime pattern edge, respectively.
Enumeration stage. In this stage, we extend the partial in-
stances to generate inter-partition instances by following
multiple search sequences. Multiple search sequences are
used because the partial instances from the pruning stage
have matched different pattern edges. For each pattern edge
(uk ,uw ), the partial instances are extended by following a
specific search sequence to match the remaining pattern ver-
ticesV (P)− {uk ,uw }. Since we have |E(P)| pattern edges, we

would use |E(P)| search sequences to generate the partial in-
stances. To distinguish with the search sequence adopted in
the intra-partition search, we call the search sequences used
here the inter-partition search sequences, which are denoted
as S = {πi |1 ≤ i ≤ |E(P)|}.
Redundant subgraph searches. The naïve design of the
enumeration stage is to invoke Algorithm 1 for each search
sequence separately and extend the partial instances tomatch
all pattern vertices. However, for different search sequences,
the same cross-partition subgraphs could be repeatedly gen-
erated to match the pattern vertices. As generating each
cross-partition subgraph has to access the data graph in
main memory, this redundant subgraph searches would ex-
cessively increase the PCI communication and thus lead to
poor performance. We illustrate the redundant subgraph
searches with the following example and introduce shared
execution in Section 4 to address this problem.
Example 2. Figure 3b showcases the redundant subgraph

searches. Using (v2,v3) as the prime data edge, the gener-
ated inter-partition instances for each search sequence are
depicted in the figure. Take π1 as an example. At the beginning
of the enumeration stage, we have the partial instance f1 =
{(u0,v2), (u1,v3)}. To match the pattern vertex π1(3) = u2,
given f1, we compute the candidate data vertices C(u3 | f1) =
{v0,v4} (Lines 8-9 in Algorithm 1). This extends f1 to generate
two new partial instances f2 = {(u0,v2), (u1,v3), (u2,v0)} and
f3 = {(u0,v2), (u1,v3), (u2,v4)}. To match the pattern vertex
π1(4) = u3, given f2, we compute the candidate data vertices
C(u3 | f2) = {v1,v5}. This extends f2 to generate two inter-
partition instances f4 = {(u0,v2), (u1,v3), (u2,v0), (u3,v1)}
and f5 = {(u0,v2), (u1,v3), (u2,v0), (u3,v5)}.
The dashed rectangles in the figure indicate the redundant

subgraph searches. For the set of search sequences {π1−5}, the
partial instances matched to the first three pattern vertices have
the same data vertices in the mapping (the green rectangles).
For the set of search sequences {π1−4}, the partial instances
matched to the first four pattern vertices have the same data
vertices in the mapping (the green and blue rectangles).

4 SHARED EXECUTION
In this section, we present the design of shared execution.
As the optimal query plan is difficult to be generated, we
propose a heuristic method to generate the plan.

4.1 Design
For inter-partition search, the enumeration stage can cause
redundant subgraph searches among different search se-
quences (Example 2). This happens when the search se-
quences have the following property.
Definition 6 (Prefix-eqivalence). Given the search

sequence π and the pattern graph P , two search sequences π1
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Figure 3: An example of two-stage approach for inter-partition search using the example graphs in Figure 1. In
the enumeration stage, the partial instances are initialized by the prime data edge (v2,v3). The bold edges in the
search sequences denote the prime pattern edges.

and π2 are prefix-equivalent at level l if the induced subgraphs
Pπ1l and Pπ2l are isomorphic with the mapping f that has ∀1 ≤

j ≤ l , f (π1(j)) = π2(j).

With the prefix-equivalence at level l as an equivalence
relation, we can partition all inter-partition instances S into
a set of equivalence classes Hl . Each [π ] ∈ Hl is a set of
prefix-equivalent search sequences. We call [π ] the prefix-
equivalence group, and π is the representative search se-
quence in this group. The set of all prefix-equivalence groups
at each level is denoted as H = {Hl |1 ≤ l ≤ |V (P)|}.

Example 3. For the search sequences in Figure 3c, at levels 1,
2 and 3, all search sequences are in the same prefix-equivalence
group. Thus, H1 = H2 = H3 = {{π1,π2,π3,π4,π5}}. At level
4, there are two prefix-equivalence groups, i.e., {π1,π2,π3,π4}
and {π5}, so H4 = {{π1,π2,π3,π4}, {π5}}.

Given the search sequence π and the partial instance f
that matches the vertex set π [1 : l], we call the ordered
sequence of data vertices (f (π (1)), f (π (2)) · · · f (π (l))) the

data sequence of f . When two search sequences π1 and π2 are
prefix-equivalent at level l , since Pπ1l and Pπ2l are isomorphic,
the partial instances for π1 and π2 actually share the same
data sequences. To exploit this sharing, we propose shared
execution that can maintain common data sequences for each
prefix-equivalence group.
Main idea. For a prefix-equivalence group [π ] ∈ Hl at level l ,
shared execution computes the data sequences by generating
new partial instances for one representative search sequence
π . The partial instances Fl for π are generated in the same
way as Algorithm 1. The data sequences of Fl can also match
other search sequences π ′ ∈ [π ] in the same group. To ob-
tain the partial instance for π ′, we can directly remap the
pattern vertices in Fl . Specifically, given f ∈ Fl , we generate
the new partial instance for π ′ by f ′ = {(π ′(1), f (π (1))) · · ·
(π ′(l), f (π (l)))}. This remapping can be performed in a very
efficient manner in the implementation (Section 5).
Inter-partition query plan. We define the inter-partition
query plan Qr = (S,H ) that consists of all inter-partition



search sequences S and the prefix-equivalence groups at
all levels H . Given S , H is generated accordingly. Thus, the
generation of Qr mainly needs to select the order for the
search sequences S . For any search sequence π ∈ S , suppose
the corresponding prime pattern edge is (uk ,uw ). Then π [1 :
2] is either (uk ,uw ) or (uw ,uk ). For the remaining pattern
vertices π [3 : |V (P)|], they could be any permutation on the
set of pattern vertices V (P) − {uk ,uw }.

Example 4. Figure 3c shows an example of shared execu-
tion. Using (v2,v3) as the prime data edge, after the pruning
stage, we have the data sequence (v2,v3) that can be mapped
to all search sequences, since they are prefix-equivalent at
level 2. To generate the data sequences for level 3, note that
all search sequences are prefix-equivalent. We choose any
one search sequence, say π1. Given the partial instance f1 =
{(u0,v2), (u1,v3)} matched to π1[1 : 2], we compute the can-
didate data vertices C(u2 | f ) = {v0,v4} for the pattern vertex
π1(3) = u2. This can generate two new partial instances f2 =
{(u0,v2), (u1,v3), (u2,v0)} and f3 = {(u0,v2), (u1,v3), (u2,v4)}.
The corresponding data sequences can be mapped to other
search sequences in the same prefix-equivalent group π2−5.
Given f2, to generate the new partial instance for π2, we remap
the pattern vertices in π2 to the data sequence and have the
partial instance f4 = {(u2,v2), (u1,v3), (u0,v0)}. At level 4,
we have two prefix-equivalent groups so the partial instances
are computed for them separately. For {π1−4}, there are two
data sequences {(v2,v3,v0,v1)} and {(v2,v3,v0,v5)}; for {π5},
two data sequences are generated, i.e., {(v2,v3,v0,v4)} and
{(v2,v3,v4,v0)}

4.2 Hardness of Order Selection
To optimize the performance of shared execution, it is crucial
to select the orders of pattern vertices for inter-partition
search sequences. For example, in Figure 3c, if π2 is set to
(u1,u2,u0,u3), then π1 and π2 are not prefix-equivalent at
level 4 and the data sequences cannot be shared.
Cost model. The cost evaluation of shared execution re-
lies on the execution cost for one search sequence. Given
the search sequence π , we consider the cost Cost(π , l) of
generating inter-partition partial instances at level l .

Cost(π , l) =

{
|Er (G)| l ≤ 2
|Rr (Pπl−1)| · K(π , l)) l > 2

(1)

In the pruning stage, i.e., l ≤ 2, the overhead is to material-
ize the inter-partition data edges Er (G). In the enumeration
stage, i.e., l > 2, the cost is linear to the number of inter-
partition partial instances Rr (Pπl−1) achieved at level l − 1.
Note that the superscript r is used in Rr (Pπl−1) to indicate the
partial instances here are inter-partition. We use K(π , l) to
denote the average execution cost for one partial instance
f ∈ Rr (Pπl−1), which includes the overhead of Compute and

Materialize for f (Algorithm 1). The order of π makes a
difference for Cost(π , l) by affecting the number of partial
instances |Rr (Pπl−1)|.
Objective function. Given the inter-partition query plan
Qr , we seek to minimize the execution cost Cost(Qr ) of
shared execution, which is defined as follows.

Cost(Qr ) =

|V (P ) |∑
l=1

∑
[π ]∈Hl

Cost(π , l) (2)

For each prefix-equivalence group [π ] ∈ Hl , shared execu-
tion only needs to compute the data sequences for only one
search sequence π , and the computed data sequences can be
shared for the entire group [π ].
Cost(Qr ) reflects two optimization criteria for the order

selection. The first criterion is tomaximize the pruning power
of each single search sequence. This decreases the number
of partial instances generated and thus reduces the enumer-
ation cost Cost(π , l) for each search sequence π . The sec-
ond criterion is to maximize the extent of sharing among
multiple search sequences. This reduces the number of prefix-
equivalence groups |Hl |, which can minimize the overall cost
Cost(Qr ). These criteria are different from the previous stud-
ies [26, 37] that choose the order for one search sequence,
since they only optimize the first objective.
Hardness. Selecting an optimal order is difficult. Lemma 1
proves that this problem is NP-hard. Lemma 2 shows that
the cost of exhaustive enumeration is as high as (2 · (|V (P)| −
2)!) |E(P ) | , making the optimal order intractable.

Lemma 1. Selecting an optimal order is NP-hard.

Proof. Consider a restricted variant of the problem that
optimizes only the extent of sharing: AssumingCost(π , l) = c
is a constant, the objective function becomes Cost(Qr ) =

c ·
∑ |V (P ) |
l=1 |Hl |. To optimize Cost(Qr ), we need to find the

maximum common subgraph [16], which is NP-hard. Since
the restricted variant of the problem is NP-hard, so is the
order selection for shared execution. □

Lemma 2. The number of all possible combinations of inter-
partition search sequences is (2 · (|V (P)| − 2)!) |E(P ) | .

Proof. For each search sequence the number of possibili-
ties is 2·(|V (P)|−2)! andwe have |E(P)| search sequences. □

4.3 Heuristic Search
Finding the optimal order for inter-partition search sequences
is difficult, which is mainly because the prefix-equivalence
exposes a large search space to enumerate all combinations
of different search sequences. To restrict the search space,
we propose a heuristic search method for the order selec-
tion that explores a different extent of sharing called strict-
equivalence. Since strict-equivalence captures the sharing



that is more constrained than prefix-equivalence, it limits the
search space and makes the order selection efficient. Mean-
while, it can effectively optimize the runtime performance
for shared execution (Section 4.4).

Definition 7 (Strict-eqivalence). Given the pattern
graph P and two search sequences π1 and π2, π1 and π2 are
strict-equivalent if they are prefix-equivalent at level |V (P)|.

Note the strict-equivalence is the special case of the prefix-
equivalence, i.e., two search sequences are prefix-equivalent
at each level. With the strict-equivalence relation, we parti-
tion the search sequences S into a set of equivalence classes
H s . Each [π ] ∈ H s is called strict-equivalence group. We use
the superscript s to differentiate H s from the equivalence
classes H partitioned by the prefix-equivalence relation. In
the following, we denote the inter-partition query plan gen-
erated by the heuristic search as Qr = (S,H s ) and we may
drop the superscript s when the context is clear.
Equivalence among pattern edges. We rely on the au-
tomorphism [12] to find the strict-equivalence groups. The
automorphism of P is an isomorphism from P to itself, which
exists when the graph is symmetric. Two pattern vertices, ui
and uj , are considered “equivalent” if there exists an auto-
morphismA such thatA(ui ) = uj ∨A(uj ) = ui . We define the
equivalence relation among pattern edges: two different pat-
tern edges, (ui ,uj ) and (uk ,uw ), are equivalent if there exists
an automorphismA such that either (1)A(ui ) = uk ∧A(uj ) =
uw or (2) A(uj ) = uk ∧ A(ui ) = uw . This equivalence is
denoted as (ui ,uj ) ≡ (uk ,uw ). With this equivalence rela-
tion, we can partition all pattern edges into a number of
equivalence edge classes. Each class consists of the equivalent
pattern edges.
Finding strict-equivalent search sequences. The equiv-
alence among pattern edges can help generate the strict-
equivalent search sequences. Lemma 3 suggests that if two
search sequences π1 and π2 have the equivalent prime pat-
tern edges, whatever order we select for π1, there exists an
order for π2 to be strict-equivalent to π1. This lemma also
indicates that the maximum number of strict-equivalence
groups for P is the number of equivalence edge classes of
P , since the search sequences can be strict-equivalent only
when their prime pattern edges are equivalent.

Lemma 3. Given the search sequence π1 whose order is
decided, the search sequence π2 can be selected to be strict-
equivalent to π1 if and only if their prime pattern edges are
equivalent.

Proof. When the prime pattern edges are equivalent,
there exists an automorphism A to map the vertices in π1
to a sequence of pattern vertices. This sequence, which we
select for π2, can be proved to be strict-equivalent to π1. □

Algorithm 2 Generate inter-partition qery plan.
Input: pattern graph P
Output: the inter-partition query plan Qr = (S,H s ).
1: EC = GenEqivalenceEdgeClass(P )
2: used = ∅

3: for (uk ,uw ) ∈ E(P) do
4: if ∃(ui ,uj ) ∈ used s.t. (ui ,uj ) ≡ (uk ,uw ) then
5: let π ′ be the search sequence for (ui ,uj )
6: π = GenStrictEqivalenceOrder(π ′,uk ,uw )
7: else
8: π = GenSearchSeqence(P ,uk ,uw )
9: Add π to S
10: Add (uk ,uw ) to used
11: H s = GenStrictEqivalenceGroup(S)

Generating inter-partition query plan. Algorithm 2 illus-
trates our heuristic search method to build the query plan. At
the beginning, the equivalence edge classes EC of P are gener-
ated (Line 1). GenEqivalenceEdgeClass finds all automor-
phisms [12] and then groups the equivalent pattern edges.
Then we select the order for each search sequence with a
different prime pattern edge (uk ,uw ) (Lines 3-10). For each
pattern edge (uk ,uw ), we find a pattern edge (ui ,uj ) that (1)
has been processed and (2) is equivalent to (uk ,uw ) (Line 4).
The equivalence between two pattern edges is checked by
verifying whether they are in the same equivalence edge
class in EC . Then the search sequence for (uk ,uw ) is selected
based on whether (ui ,uj ) exists.
Case 1: (ui ,uj ) exists. In this case, we would select an order
for the search sequence π to make it strict-equivalent to an
existing search sequence. Let π ′ be the search sequence with
(ui ,uj ) as the prime pattern edge. GenStrictEqivalence-
Order selects an order for π that is (1) strict-equivalent to
π ′ and (2) adopts (uk ,uw ) as the prime pattern edge (Line 6).
GenStrictEqivalenceOrder can be implemented by enu-
merating all permutations of pattern vertices and then ex-
amining whether the enumerated order is satisfactory. Such
an order is guaranteed to be found because of Lemma 3.
Case 2: (ui ,uj ) does not exist. GenSearchSeqence selects
an order that can maximize the pruning power and uses
(uk ,uw ) as the prime pattern edge (Line 8). To maximize the
pruning power,GenSearchSeqence enumerates all permu-
tations of pattern vertices and then evaluates the execution
cost Cost(π ) for each given order of π .

Cost(π ) =

|V (P ) |∑
l=1

Cost(π , l) (3)



4.4 Theoretical Analysis
We analyze the efficiency and effectiveness of our heuristic
search method.
Efficiency of plan generation. For Algorithm 2, because
bothGenStrictEqivalenceOrder andGenSearchSeqence
are executed by enumerating all permutations of pattern
vertices, the time complexity of each loop at Lines 4-10 is
O(|V (P)|!). Considering there are |E(P)| pattern edges, the
main procedure of Algorithm 2 at Lines 3-10 costsO(|E(P)| ·
|V (P)|!). This complexity is much smaller than finding the
optimal order to explore the prefix-equivalence (Lemma 2).
Effectiveness of optimization. LetQo

r be the optimal query
plan generated by exhaustively enumerating all orders for
the search sequences. Let Qs

r be the query plan generated by
our heuristic search, i.e., Algorithm 2. We introduce Lemma 4
to compareCost(Qo

r ) andCost(Qs
r ). If the cost at the last level

Cost(π , |V (P)|) takes up more than a portion c of the enu-
meration cost Cost(π ) for each search sequence π , Lemma 4
proves that the ratio between the costs Cost(Qo

r )/Cost(Q
s
r )

is larger than c . By Equation 1, Cost(π , l) is linear to the
number of partial instances |Rr (Pπl−1)|. Since in practice the
number of partial instances at each level is always much
larger than that at the previous level, the cost at the last level
Cost(π , |V (P)|) becomes the bottleneck and takes up a large
portion c ofCost(π ). Since c is expected to be large,Cost(Qo

r )

is close to Cost(Qs
r ).

Lemma 4. For any search sequenceπ , assumeCost(π , |V (P)|)
≥ c ·Cost(π ), where 0 < c < 1. Then,Cost(Qo

r )/Cost(Q
s
r ) ≥ c .

Proof. Let n = |V (P)|. For Qo
r = (So ,Ho), we use the

superscript o to denote the search sequences and prefix-
equivalence groups that are generated by the optimal so-
lution. For Qs

r = (Ss ,H s ), we use the superscript s to differ-
entiate the plan generated by our heuristic search method
from Qo

r . Let π s
i use the same prime pattern edge as πo

i that
has the same subscript i .
By Algorithm 2, for each strict-equivalence group [π ] ∈

H s , there is one search sequence π ′ ∈ [π ] generated by
GenSearchSeqence to minimize the cost Cost(π ′), while
the remaining search sequences in [π ] are set to be strict-
equivalent to π ′. Thus, the order of any search sequence
πj ∈ [π ] can minimize Cost(πj ). Then for each π s

i ∈ Ss ,
Cost(π s

i ) ≤ Cost(πo
i ) (4)

Algorithm 2 makes the search sequences with the equiv-
alent prime pattern edges in the same strict-equivalence
group. By Lemma 3, each group has maximized the set of
search sequences that can be strict-equivalent. Thus, for Qs

r ,
the sharing of search sequences at the last level is optimal
and better than Qo

r (the details are omitted here).∑
[π ]∈Ho

n

Cost(π ) ≥
∑

[π ]∈H s

Cost(π ) (5)

Cost(Qo
r ) can be derived as follows. The first inequality is

deduced by keeping only the cost at the last levelCost(πo
i ,n).

The second inequality follows by our assumptionCost(πo
i ,n) ≥

c · Cost(πo
i ). The third inequality goes by Equation 4. The

forth inequality is derived by Equation 5.

Cost(Qo
r ) =

n∑
l=1

∑
[π o ]∈Ho

l

Cost(πo , l) ≥
∑

[π o ]∈Ho
n

Cost(πo ,n)

≥
∑

[π oi ]∈H
o
n

(c ·Cost(πo
i )) ≥ c ·

∑
[π oi ]∈H

o
n

Cost(π s
i )

≥ c ·
∑

[π s ]∈H s

Cost(π s ) = c ·Cost(Qs
r )

Therefore, this lemma is concluded. □

5 EFFICIENT ENUMERATION
In this section, we present the implementation of shared
execution for the inter-partition search.
Algorithm. Algorithm 3 illustrates the implementation of
enumerating inter-partition instances. To enumerate the
inter-partition instances for a strict-equivalence group [π ] ∈
H s , the execution consists of three steps.
Step 1: Pruning stage. To prune all intra-partition instances,
we enumerate all inter-partition data edges (vi ,vj ) and map
(vi ,vj ) to the prime pattern edge (π (1),π (2)) (Lines 3-5). As
both vi and vj are possible to be mapped to π (1) or π (2), we
map (vi ,vj ) and (vj ,vi ) to (π (1),π (2)).
Step 2: Enumeration stage. Suppose the pattern vertex at level
l is u. Let N+(u) be the backward neighbors of u, i.e., those
neighbors of u that are matched before u in the search se-
quence π . Before Compute, LoadSubgraphToGPU would
load a subgraphG ′ ofG frommain memory to the GPU (Line
9).G ′ consists of the adjacent lists required for the candidate
set computation inCompute. To collect the required adjacent
lists Nl , for each partial instance f in the currently achieved
partial instances B and each backward neighbor ui ∈ N+(u),
the adjacent list of the data vertexv = f (ui ) is added into Nl
(Line 16). The set of adjacent lists Nl is fetched from the data
graph G stored in main memory and transferred into the
GPU (Line 17). To increase the throughput of data transfer,
the adjacent lists are organized into a continuous array and
then transmitted in batch.

After G ′ is ready, the Compute procedure in Algorithm 1
is invoked to compute the candidate set C (Line 10). When
C is obtained, we will execute DupRemove to filter the ele-
ments inC that may cause duplicate inter-partition instances
(Line 11). We leave the discussion on DupRemove later. With
the new candidate set Cr , the materialize procedure in Al-
gorithm 1 is called to generate the new partial instances Bl
for level l (Line 12).



Algorithm 3 InterPartitionSearch
Input: the pattern graph P , data graph G, partition plan Φ,

and inter-partition query plan Qr = {S,H s }.
S = {πi } are all inter-partition search sequences and H s

is a set of strict-equivalence groups.
Output: the inter-partition instances Rr (P)
1: for [π ] ∈ H s do
2: ∀1 ≤ l ≤ |V (P)|,Bl = ∅ ▷ pruning stage
3: for (vi ,vj ) ∈ E(G) s.t. ρ(vi ) , ρ(vj ) do
4: B2 = B2 ∪ {(π (1),vi ), (π (2),vj )}
5: B2 = B2 ∪ {(π (1),vj ), (π (2),vi )}
6: for 3 ≤ l ≤ |V (P)| do ▷ enumeration stage
7: u = π (l)
8: N+(u) = {ui |ui ∈ N (u) ∧ π−1(ui ) < π−1(u)}
9: LoadSubgraphToGPU(Bl−1,N+(u))
10: C = SubgEnum.Compute(u,π ,Bl−1)
11: Cr = DupRemove(Bl−1,C,u,N+(u))
12: Bl = SubgEnum.Materialize(u,π ,Bl−1,Cr )
13: for πj ∈ [π ] s.t. πj , π do ▷ exploit sharing
14: Rr (P) = Rr (P)∪ ReMap(B |V (P ) |,π ,πj )

15: procedure LoadSubgraphToGPU(B,N+(u))
16: Nl = {N (v)| f ∈ B,ui ∈ N+(u),v = f (ui )}
17: Load Nl from main memory
18: procedure DupRemove(B,C,u,N+(u))
19: for f ∈ B do
20: e1 = OrderPair(f (π (1)), f (π (2)))
21: Cr (u | f ) = ∅

22: for v ∈ C(u | f ), f laд = true do
23: for ui ∈ N+(u) do
24: if ρ(v) , ρ(f (ui )) then
25: e2 = OrderPair(v, f (ui ))
26: if e1 > e2 then
27: f laд = f alse

28: if f laд then
29: Cr (u | f ) = Cr (u | f ) ∪v

30: Return Cr

31: procedure ReMap(B,πi ,πj )
32: B′ = ∅

33: for f ∈ B do
34: f ′ = {(πj (l),v)|1 ≤ l ≤ |V (P)|,v = f (πi (l))}
35: B′ = B′ ∪ f ′

36: Return B′

Step 3: Exploit sharing.With the inter-partition instancesB |V (P ) |

for the search sequence π , the final step is to apply Remap to
generate the instances for any other search sequenceπj ∈ [π ]
by utilizing B |V (P ) | (Line 14). Specifically, for each instance
f ∈ B |V (P ) | and each search sequence πj ∈ [π ], we map

the sequence of pattern vertices (πj (1),πj (2) · · · πj (|V (P)|))
to the data sequence of f (Line 34). Note that for a search
sequence πj ∈ [π ], the used sequence of pattern vertices
is the same. Thus, in our implementation, we simply mate-
rialize the sequence of pattern vertices once and map it to
the data sequences of all instances B |V (P ) | . In this way, we
significantly reduce the overhead of Remap.
Avoid duplicates.Comparedwith Algorithm 1, Algorithm 3
introduces one additional procedure, i.e., DupRemove, to
prevent generating duplicate inter-partition instances. Du-
plicates occur when there are multiple inter-partition data
edges in the partial instance, as shown in the example below.

Example 5. Suppose we follow the search sequences in Fig-
ure 3c to search the inter-partition instances on the example
graph in Figure 1. Without duplicate removal, if starting from
the prime data edge (v3,v0) and following π1, (v3,v0,v2,v4) is
found to match π1 = (u0,u1,u2,u3); if starting from the prime
data edge (v3,v2) and following π5, (v3,v2,v0,v4) is found to
match π5 = (u0,u2,u1,u3). However, both mappings are the
same and thus duplicates occur.

To avoid duplicate instances, we can assign a total order
for data edges and enforce the prime data edge to be the
smallest in terms of the edge order. Lines 18-30 illustrate the
implementation of DupRemove. For each partial instance f ,
e1 is the prime data edge (Line 20). For any data vertex v ∈

C(u | f ) and any data vertex f (ui ) matched to the backward
neighbor ui , we ensure v and f (ui ) cannot form an inter-
partition data edge smaller than e1 (Lines 24-27).
Correctness.We introduce Lemma 5 to prove the correct-
ness of Algorithm 3.

Lemma 5. Algorithm 3 can generate exactly the inter-partition
instances.

Proof. Let Rr (P) be the inter-partition instances gener-
ated by Algorithm 3. Denote Rro(P) as the true inter-partition
instances. We need to prove that Rr (P) = Rro(P).
First, as each instance generated by Algorithm 3 crosses

different partitions, by definition Rr (P) ⊆ Rro(P). Then, we
would show that Rro(P) ⊆ Rr (P). For each instance f ∈ Rro(P),
there must exist a pair of pattern vertices (uk ,uw ) ∈ E(P)
such that the corresponding data edge (f (uk ), f (uw )) is the
smallest among the inter-partition data edges in f . Suppose
the search sequence π is the one that has (uk ,uw ) as the
prime pattern edge. Then f is generated for π in Algorithm 3
and thus f ∈ Rr (P). Therefore, Rro(P) ⊆ Rr (P). With Rr (P) ⊆
Rro(P) and Rro(P) ⊆ Rr (P), we have Rr (P) = Rro(P). □

Memory management. For memory management of par-
tial instances, we follow the previous work [26] to enumerate
subgraphs in a pipeline manner. Given the memory capacity
θ reserved for storing the intermediate result, we keep an
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Figure 4: Queries

equal portion of memory for each level θ/|V (P)| to main-
tain the partial instances. To generate the partial instances
for level l + 1, we would take a set of partial instances at
level l that are estimated to fit into the capacity kept for
this level. We repeat this for each level until the instances
are found. This can control the size of intermediate result
without causing memory overflow.

6 EXPERIMENTS
In this section, we would answer the following questions by
conducting extensive experiments.

• Are the proposed techniques effective to improve the
performance of PBE?

• Can our proposed solution PBE outperform the exist-
ing single-machine approaches?

• How do the parameters, such as the size of data graph,
affect the performance of PBE?

6.1 Experimental Setup
Baselines. We mainly focus on comparison with the base-
lines on CPU and GPU on a single machine. We implement
these baselines in our codebase.

• NEMO [26]: The state-of-the-art GPU solution for sub-
graph enumeration. As the work [26] is originally de-
signed for network motif discovery, we only employ
the component for subgraph enumeration in our ex-
perimental evaluation.

• GPSM [37]: The state-of-the-art GPU solution for sub-
graph matching. As subgraph enumeration is defined
on unlabeled graphs, we do not execute the filtering
phase in GPSM, which generates candidate vertices
and edges by labels, but only uses the join phase to
enumerate subgraphs.

• CFL [2]: The state-of-the-art index-based CPU solu-
tion. As [2] only presents a serial algorithm, we opti-
mize it with multi-threaded support.

Table 2: The datasets used in the experiments.

Dataset YT LJ OR UK FR YH
|V |(×106) 1.1 3.9 3.0 18.5 65.6 720.2
|E |(×106) 2.9 34.6 117.1 298.1 1806.0 6434.5
Size (GB) 0.027 0.3 0.9 2.4 14.4 53.3

• VF2 [8, 24]: The widely used nonindex-based CPU
solution. We also improve the original implementation
with multi-threaded support.

Datasets. We conduct the experiments on the real-world
datasets shown in Table 2. The datasets include youtube (YT),
livejournal (LJ), orkut (OR), uk-2002 (UK), friendster (FR),
yahoo (YH).
Queries. We follow most existing works of subgraph enu-
meration [20, 23, 29, 31] to evaluate the small and dense
pattern graphs. Figure 4 lists the pattern graphs tested in
the experiments, which are also used in previous studies.
In our experiments, we count the number of instances and
report the execution time. Each experiment is performed
three times, and the average is presented.
Experimental Environment. We conduct the experiments
in the following settings.

• For the GPU-based baselines and our approach, we use
a machine equipped with 256GB main memory, two
NVIDIA TITAN V GPUs (each has 12GB device mem-
ory), and two Intel Xeon Gold 6140 CPU processors
(each has 18 cores). The programs are compiled with
CUDA-10.0 and GCC 7.3.0 with O3 flag.

• For the CPU-based baselines, we use a machine with
four 10-core Intel Xeon E7-4820 processors (40 cores
in total) and 128GB main memory. The programs are
compiled with GCC 5.4.0 using O3 flag.

6.2 Effect of Partition Based Framework
In this subsection, we evaluate the effectiveness of our parti-
tion based framework. For comparison, we implement two
solutions that do not partition the data graph, i.e., UMA and
RADS. To access the data graph larger than GPU memory,
both solutions rely on the unified memory technology in
CUDA. It encapsulates the management of large data and
offers a hardware-assisted data access mechanism similar to
virtual memory in CPU context, where data is loaded from
main memory on demand and cached in GPU memory if pos-
sible. To enumerate subgraphs, UMA adopts the same method
as the intra-partition search of PBE. It can be considered as a
variant of PBE without the inter-partition search by forcing
the partition number to be one. In fact, UMA is the direct
solution as mentioned in Section 1. RADS is a GPU-based ap-
proach adapted from the recent distributed framework [31].
The major process of RADS follows the design of UMA. The



Table 3: Effect of partition based framework. Each entry in the table represents “total time=(communication time,
computation time)”.

Method PBE UMA RADS
q2 1.7 × 103 = (1.6 × 103, 5.5 × 101) 1.4 × 104 = (1.4 × 104, 8.0 × 101) 7.0 × 103 = (6.8 × 103, 1.6 × 102)
q3 1.2 × 103 = (1.2 × 103, 7.5 × 101) 2.0 × 104 = (2.0 × 104, 1.6 × 102) 9.7 × 103 = (9.5 × 103, 2.2 × 102)
q5 5.8 × 103 = (5.3 × 103, 4.9 × 102) 1.2 × 105 = (1.2 × 105, 1.2 × 103) 1.0 × 105 = (9.9 × 104, 1.9 × 103)
q6 1.2 × 103 = (1.0 × 103, 2.4 × 102) 2.9 × 104 = (2.9 × 104, 5.3 × 102) 1.4 × 104 = (1.3 × 104, 5.0 × 102)
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Figure 5: The ratios of the intra-partition instances
found by PBE and RADS versus the overall instances.

only difference is that RADS has a local search process to
find SOME intra-partition instances before the major pro-
cess. This process is based on the heuristics that if the border
distance (the distance to the border of the graph partition) of
a data vertex is longer than the span (the maximum distance
to the other pattern vertices) of the first pattern vertex to
match, then searching from this data vertex can definitely
lead to the intra-partition instances.

As shown in Table 3, in terms of the overall performance,
PBE is more than 10 times faster than UMA and RADS for the
data graph (FR) that cannot fit into the GPU memory. With
the partition based framework, PBE can enumerate intra-
partition instances efficiently, as the intra-partition search
does not access the data graph in main memory. As would
be shown by the profile result below, most instances are
intra-partition and thus the overall performance is improved
significantly. UMA exhibits the poorest performance, since it
can incur data transfer via PCI-e on enumerating each sub-
graph when the data needed is not cached in GPU memory.
RADS does not perform well for the same reason as UMA, but
it is slightly better than UMA due to the local search process.
It can find some intra-partition instances efficiently without
causing the PCI-e traffic, which can reduce the workload
for the major process and improve the overall performance.
However, since the majority of the instances are still enumer-
ated in the major process, the local search process cannot
help RADS to achieve comparable performance with PBE.
Besides the overall performance, Table 3 also shows the

time breakdown. For each method, we define the communi-
cation as the execution that might cause data transfer over
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Figure 6: Effect of shared execution.

PCI-e. Specifically, for PBE we measure the time of Lines
9-10 in Algorithm 3 for inter-partition search; the time at
Line 3 of Algorithm 1 is measured for UMA and the major
process of RADS. We define the computation time as the to-
tal execution time minus the communication time. From the
time breakdown, the communication time varies for differ-
ent methods because of the different strategies to reduce the
amount of computation that needs to access the data graph
from main memory: the partition based framework for PBE,
the hardware-assisted caching in the unified memory for
UMA, and the unified memory plus the local search process
for RADS. The fact that PBE spends the least communication
time confirms that the partition based framework is the most
effective strategy.

We profile the intra-partition instances that are found by
PBE and RADS and show the results in Figure 5. RADS can
only capture a limited number of intra-partition instances,
less than 15%. Due to the small-world property of real-world
graphs, the border distance is usually small. If using a pattern
graph with large diameter, e.g., q2, the heuristics employed
by RADS can only identify a few qualified data vertices. In
comparison, PBE can capture all intra-partition instances,
i.e., over 90% of the instances. As most of the instances are
processed in intra-partition search, the workload in inter-
partition search is small and the communication cost is sig-
nificantly reduced.
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6.3 Effect of Shared Execution
In this subsection, we evaluate the effectiveness of shared ex-
ecution. For comparison, we implement a version of PBE that
disables shared execution and searches the inter-partition
instances for one search sequence at a time. We preprocess
two datasets (YT and LJ) with the number of partitions set to
4. To evaluate the performance of inter-partition search, we
only measure the execution time of finding inter-partition
instances. Figure 6 shows the performance results of inter-
partition search on two implementations of PBE that enable
and disable shared execution respectively.

For all queries, shared execution achieves the speedups of
1.4 − 9.2 times. The speedups differ for queries because the
amount of sharing varies. For instance, in q6, we can make
all inter-partition search sequences in one strict-equivalence

group and generate the data sequences for one group alto-
gether. However, in q9, we can only arrange the search se-
quences into four groups. The number of strict-equivalence
groups generated depends on the number of equivalence
edge classes in the pattern graph (Lemma 3). Despite differ-
ent numbers of strict-equivalence groups achieved, shared
execution can avoid redundant enumeration costs among
multiple search sequences and improve the runtime perfor-
mance in general cases.

6.4 Comparison with Baselines
In this subsection, we compare the performance of PBEwith
the single-machine baselines by varying queries (Figure 7)
and datasets (Figure 8). Note that we set the running time
limits as 2 and 24 hours for the experiments in Figure 7 and
Figure 8 respectively.
Varying queries. Compared with the GPU baselines, PBE
achieves significantly better performance than NEMO and
GPSM. For the datasets that fit into the GPUmemory, such as
LJ and OR, PBEwould directly operate on the data graph and
follow the same algorithm as the GPU baselines, i.e., Algo-
rithm 1 to enumerate subgraphs. However, the performances
remarkably differ because of the implementation. Based on
GPSM, PBE applies a compression technique, which is pro-
posed in [29], to reduce the materialization cost of partial
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instances. It can significantly boost the performance since
the number of partial instances is always huge. To demon-
strate the effect of compression, we compare PBE with a
variant of itself without the compression technique and show
the results in Figure 9. As can be seen from the figure, the
speedups can be 1.4− 100 times. The compression technique
is detailed in [29], which is out of scope of this paper. Note
that NEMO achieves the worse performance than PBE and
GPSM, because it adopts an inefficient method to compute
the candidate data vertices (Line 8 of Algorithm 1). To per-
form the set intersection operation, PBE and GPSM use the
binary search to check whether a data vertex exists in an
adjacent list, which takes logarithmic time. However, NEMO
resorts to the linear scan, which can significantly increase
the workload. Such a method might be efficient for small
graphs [26], but it leads to poor performance for large graphs.

Compared with the CPU baselines, PBE significantly out-
performs CFL and VF2. The speedups can be over three
orders of magnitude. Even though we optimize CFL and
VF2 with multi-threaded support, they are still slow on the
powerful 40-core machine. In comparison, PBE runs on the
GPU that has massive (thousands of) thread parallelism and
large memory bandwidth. This superior computation power
makes the GPU-based approach the better solution for sub-
graph enumeration.
Varying datasets. On different datasets, PBE consistently
outperforms other baselines. Note that for the large graphs
including FR and YH, the bars for GPSM and NEMO are miss-
ing. This is because they cannot process the data graphs
larger than the GPU memory. Such a limitation restricts
their application scopes, despite their superior performances
to the CPU baselines on the small graphs. The CPU baselines
are able to process large graphs, but the restricted computa-
tion power can easily lead to poor performance, especially
on large graphs. Our GPU solution PBE can overcome the
limitations of the GPU and CPU baselines and efficiently
scale to large graphs.

Table 4: The statistics of sampled graphs.

% of data vertices 20% 40% 60% 80% 100%
|V |(×106) 80.7 211.6 366.1 538.2 720.2
|E |(×109) 0.3 1.0 2.3 4.1 6.4
Size (GB) 2.5 9.2 19.9 34.7 53.3

6.5 Effect of Graph Size
To evaluate the effect of the size of data graph, we follow the
previous works [20, 35] to vary the graph size by sampling
subgraphs from a large graph, i.e., YH. According to [20, 35],
20%,40%,60%,80% of the data vertices are randomly sampled
and then the induced subgraphs on the selected vertices are
generated. We show the statistics of the sampled graphs in
Table 4 and present the experimental results in Figure 10.
It can be seen that PBE remains efficient and outperforms
other baselines as the graph size increases. The bars forGPSM
and NEMO are missing when the data vertices sampled are
more than 60%, because the sampled graphs are larger than
the GPU memory. The CPU baselines always exhibit poor
performance regardless of the graph size.

7 CONCLUSION
In this work, we propose a new approach for GPU-accelerated
subgraph enumeration that can efficiently scale to large
graphs beyond the GPU memory. Our approach divides the
data graph into partitions and then search the instances
within and across the graph partitions separately. To search
the inter-partition instances efficiently, we propose a shared
execution approach to reduce the redundant subgraph search
among multiple search sequences. The experimental results
show that our approach outperforms the existing solutions
on the single machine and exhibits competitive performances
with state-of-the-art distributed solutions.
Acknowledgements. The project is supported by the grant,
MOE2017-T2-1-141, from Singapore Ministry of Education.
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