
River: A Real-time Influence Monitoring System on
Social Media Streams

Mo Sha†, Yuchen Li‡, Yanhao Wang†, Wentian Guo†, Kian-Lee Tan†

†School of Computing, National University of Singapore, Singapore
{sham,yanhao90,wentian,tankl}@comp.nus.edu.sg

‡School of Information Systems, Singapore Management University, Singapore
yuchenli@smu.edu.sg

Abstract—Social networks generate a massive amount of inter-
action data among users in the form of streams. To facilitate social
network users to consume the continuously generated stream and
identify preferred viral social contents, we present a real-time
monitoring system called River to track a small set of influential
social contents from high-speed streams in this demo. River has
four novel features which distinguish itself from existing social
monitoring systems: (1) River extracts a set of contents which
collectively have the most significant influence coverage while
reducing the influence overlaps; (2) River is topic-based and
monitors the contents which are relevant to users’ preferences;
(3) River is location-aware, i.e., it enables user influence query
on the contents falling into the region of interests; and (4) River
employs a novel sparse influential checkpoint (SIC) index to
support efficient updates against the streaming rates of real-
world social networks in real-time.

Keywords—Social network analysis, influence maximization,
Twitter, location-based service.

I. INTRODUCTION

The last few decades have witnessed the booming of online

social networks (OSNs) where hundreds of millions of people

interact with each other and produce an unprecedented amount

of content. The prevalence of OSNs has prompted much

interest in the study of information diffusion, as a piece

of information could quickly become pervasive through the

“word-of-mouth” propagation among friends in the network.

Such a diffusion phenomenon has been shown to be powerful

in many applications, such as viral marketing [1], [2], network

monitoring [3], and recommendation systems [4]. As such,

there have been extensive studies on social influence due to

its immense value in real-world scenarios. See a recent survey

[5] on social influence for a more comprehensive discussion.

Most existing studies focus on analyzing static social inter-

action data, e.g., retweets on Twitter and shares on Facebook,

and build models to understand social influence [6], [7]. In

reality, social influences are highly dynamic and the interac-

tions between users can be altered drastically by breaking news

and trending topics [8]. Thus, the influence model built on

static data can quickly become outdated. Although there are

some efforts on dynamic influence analytics, e.g., the dynamic

influence maximization (IM) problem [9]–[13] that tracks a

set of k influential users with the largest influence from an

evolving network, the performance is still unsatisfactory to

meet the demand for large-scale applications. For example,

the state-of-the-art dynamic IM solutions can only process a

few hundreds of updates per second [9]–[11], which is far

lower than the update rates of real-world social streams, e.g.,

about 7500 tweets are generated on Twitter per second.

In this demo, we present River: a real-time influence moni-

toring system on dynamic social streams. River tracks influen-

tial social elements (e.g., tweets/blogs) against social streams

updated at high rates. River is equipped with the following

unique features, which distinguish itself from existing dynamic

social influence analytic solutions.

• River is based on the influence maximization problem

(IM) over social streams [8], [14]. By taking into account

the influence overlaps among different social elements, it

extracts a set of contents collectively achieving the largest

influence coverage on social audiences. Such requirement

makes the influence monitoring problem to be NP-hard.

• River is topic-aware and query-specific. Users can input

keywords/hashtags as queries to the system. River will

extract the topical information of queries and proceed to

track influential elements on the corresponding topics.

• River is location-aware. Many OSNs are equipped with

location-based services. For example, geo-tagged tweets

can be posted from GPS-enabled devices. River can lever-

age such spatial information to capture region-constrained

influences. When a user specifies a region of interest,

River will track the elements which are the most influen-

tial over the social audiences in the region.

• River employs a novel sparse influential checkpoint (SIC)

index proposed in our previous work [8] to enable real-

time stream processing. By exploiting the submodularity

of the influence function, the results returned by SIC are

guaranteed to be (14−ε)-approximate to the optimal ones

where ε ∈ (0, 1) is a tunable parameter to achieve the

trade-off between efficiency and quality. In the Twitter

application, River can perform 30K updates per second,

which is much higher than the update rate of the Twitter

stream, i.e., 7.5K updates per second.

The rest of the paper is organized as follows. The related

work is discussed in Section II. Section III presents a general

working scenario of River. Subsequently, Section IV intro-

1429

2018 IEEE International Conference on Data Mining Workshops (ICDMW)

2375-9259/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDMW.2018.00203

(a) Web interface of River (b) Interactive influential tweet exploration

Fig. 1: In 6th July 2017, Donald J. Trump visited Poland and gave a speech at 1:19 PM, Warsaw (4:19 AM, PST). He posted

a tweet to mention this event at 1:45 PM.

duces the streaming model as well as the monitoring problem

of River. Section V describes River’s processing framework

and the SIC index. Section VI presents the demonstration

details and Section VII concludes the whole paper.

II. RELATED WORK

Social media users often rely on keyword search to explore

rich contents that are continuously generated on social media

platform [15]–[17]. However, keyword search does not con-

sider the topical information as well as the social influence,

which leads to suboptimal search results. There have been

some existing studies on tracking topic-aware influencers in

social streams [18]. [18] computes the influence scores of users

based on information flows and proposes a method to track

top-k influential users on a specific topic. Several commercial

websites such as Lithium 1 and Keyhole 2 also provide services

for social influence analytics. Lithium provides a social impact

ranking to measure the influence scores of users. It collectively

considers the number of tweets, followers, active audience,

mentions, and replies, as well as the overall sentiment to

compute the influence score. Keyhole tracks the trends for

hashtags, accounts, keywords, and mentions in real-time and

provides query interfaces and visualization tools to show the

various statistics of a specific topic, i.e., top posts, influencers,

location distribution, sentiment, and etc. However, the above

solutions ignore the influence overlaps among users and may

lead to the redundancy issue. In addition, all of them except

Keyhole are location-unaware. Keyhole only provides the

location distribution of users concerning a fixed topic, but it

cannot handle ad-hoc region queries.

To the best of our knowledge, River is the first real-time

social influence monitoring system which simultaneously sup-

ports the aforementioned features that are vital for real-world

1https://www.lithium.com
2http://keyhole.co

applications. For example, a senate candidate could leverage

River to track sets of tweets that influence the most people in

the state of California on different political issues, such as “Tax

Reform”, “Refugee Ban”, and “Healthcare Policy”. Accessing

such real-time information would help the candidate identify

sudden public opinion swings and assist her in planning for

subsequent public speeches or tweets.

III. SYSTEM OVERVIEW

The working scenarios of River are illustrated in Figure 1.

Figure 1a is the web interface of River and Figure 1b is a view

of River’s user interaction. In Figure 1a, users can input a set

of query keywords to specify their tracking preference, e.g.,

“Poland” showed in the search bar. Users can also restrict

the region of interest. In this example, we are interested in

all the tweets posted in the United States. Subsequently, River

starts to stream in new tweets and track influential ones. There

are three main components in the web interface that visualize

the results to end users. First, a timeline on the right of the

interface shows when the influential tweets (marked as colored

nodes), which are related to “Poland”, are posted. The color

represents a tweet’s degree of influence impact, and Trump’s

tweet (marked as red) achieves the largest influence among

all tweets during this period. Meanwhile, these influential

tweets are also illustrated as nodes in the map which can be

hovered over to show the full contents. The timeline slides

when a batch of new tweets are streamed into the system and

the influential tweets are updated in real-time. Second, the

heatmap demonstrates the degree of influence achieved by the

extracted tweets in different regions. Third, a time series on

the bottom show the influence trend of the tracked tweets to

demonstrate the variation of the public opinion on the user

query keywords. Figure 1b illustrates that users can click on

a certain node which attracts their interest in terms of the

influence impact, and the tweets which are influenced (i.e.,

1430

replies/retweets) will be shown in the map. A child node can be

expanded recursively if possible and all nodes are interactive

to show the contents of the tweet chain.

In this demo, we showcase River’s efficiency in handling

massive updates of the twitter stream. In particular, we allow

users to specify the rate of twitter stream updates. We keep

collecting a sample stream of incoming tweets from Twitter

streaming API3 and users can fast forward the stream by

specifying different timeline shift (minute/hour/day) of the up-

dates. River employs a novel SIC index to selectively maintain

O(logN
ε) checkpoints for a sliding window of N tweets, and

each of which tracks the candidate solution w.r.t. different

starting timestamps of the sliding window. As a consequence,

this allows the system to always utilize the first non-expired

checkpoint to extract the influential tweets w.r.t. the up-to-date

sliding window, while still guarantees the approximation ratio.

IV. MONITORING PROBLEM

Social Element. A social element e is defined as a tuple

e = 〈u, t, doc, loc, par〉 where e.u is the user who per-

forms/posts e, e.t is the timestamp, e.doc is the textual content

of e represented by a bag of l words {m1, . . . ,ml} drawn

from a vocabulary, and e.loc is the location where the social

element is posted. In addition, e.par represents the element

which e responds to (e.g., retweets/replies) and captures the

influence from e.par to e. In reality, “tweet” and “retweet” on

Twitter are typical social elements, which are associated with

timestamps and contents. A tweet/retweet will have a geo-tag

if the user posts it from a GPS-enabled device and allows for

position sharing.

Social Stream. A social stream comprises a sequence of n
social elements indexed by 1, . . . , n and ordered by their

timestamps. To capture the temporal information, we adopt

the sliding window model [19]. Given a window of length N ,

a sliding window Wt contains social elements whose indices

are between t−N + 1 and t.

Topic-Aware Relevance. We model the content of each social

element as a set of weighted topics. We treat the topic model,

e.g., LDA, as a black box and any topic extractions or mining

techniques can be adopted to transform the social content into

a latent space Z and the output is a weighted vector He

with |Z| dimensions. Such topical distribution can be assumed

to remain stable in a period of time, and the model can be

retrained whenever necessary.

Given a set of query keywords, i.e., q, we can measure

the topic-aware relevance between the user query and a social

element. By treating the query keywords as a document, q
can also be projected into a |Z| dimensional topical vector.

We follow several previous works, e.g., [15], [16], to measure

the relevance between the social element e and the query q.

φ(e, q) =
∑

z∈Z

rel(e.doc, z) · rel(q, z) (1)

3https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/
GET statuse sample

time

Delete Push

Fig. 2: Processing framework of the SIC index.

where rel(e.doc, z) and rel(q, z) represent the relevance of

the topic z against the social element and the query keywords

respectively.
Region-constrained Social Influence. We follow [8] and use

social interaction data to quantify social influence. We say a

social element e influences a user u in Wt w.r.t. a region R,

denoted by (e� u)Rt , if there exists a social element e′ posted

by user u such that e′ ∈Wt and e′.loc ∈ R, and e′ is directly
or indirectly influenced by e. Given a user specified region R
and a set of social elements S, we measure the influence of S
over the current sliding window Wt by defining the influence

set of S w.r.t. R.
Definition 1: (Influence Set) The influence set of a social

element set S w.r.t. the query region R at time t, denoted

as IRt (S), is the set of users influenced by at least one of

the social elements in S. Equivalently, IRt (S) = {u|∃e ∈
S s.t. (e� u)Rt }.
Intuitively, the influence set of S denotes the set of users who

recently post a social element under the impact of S. With the

aforementioned setup, we are now ready to define the problem.
Influential Social Element Set Selection. Given the user

keyword query q and a region of interest R, the goal of River

is to maintain a set of social elements which are topic-wise

relevant to the query while achieving the largest influence w.r.t.

the up-to-date window Wt. We define the ranking function

fR,q
t (S) to quantify the utility of a social element set S:

fR,q
t (S) =

λ

n
· IRt (S) + (1− λ) ·

∑

e∈S

φ(e, q) (2)

where n is a factor to normalize IRt (S) into the same scale as

φ(e, q) and λ is a tunable parameter to balance between topic

relevance and social influence. Then, we formally define the

influential social element selection problem.
Definition 2: Given a set of keywords q, a region R, and the

result size k, the influential social element selection problem

aims to extract the optimal set S∗
t that maximizes fR,q

t (·) at

any time t, given at most k elements can be selected, i.e.,

S∗
t = argmaxS:|S|≤k f

R,q
t (S).

V. RIVER PROCESSING FRAMEWORK

It can be shown that it is NP-hard to extract the influ-

ential elements for each sliding window Wt, since it is a

general version of the problem defined in [8]4. Although

4When λ=1, the problem is equivalent to the one defined in [8].

1431

Algorithm 1: SIC MAINTENANCE

1 Required: SIC at time t− 1: {Λt1 ,Λt2 , . . . ,Λts};
2 while receiving element et at time t do
3 Create Λts+1 where ts+1 = t;
4 foreach Λti do
5 Push et to Λti ;
6 if t1 ≤ t−N then
7 Delete Λt1 from SIC;
8 foreach Λti do
9 Λ− ← ∅;

10 foreach Λtj such that tj > ti do
11 if Λtj ≥ (1− ε)Λti ∧ Λtj+1 ≥ (1− ε)Λti then
12 Λ− ← Λ− ∪ {Λtj};
13 else
14 Λti ← Λtj ;
15 break;

16 Delete the checkpoints in Λ− from SIC;
17 Retrieve the result of Λt1 for the query at time t;

a greedy heuristic, which iteratively selects a element with

the maximum gain in fR,q
t (·), achieves (1 − 1

e)-approximate

to the optimal solution because fR,q
t (·) is monotone and

submodular5 [20], the efficiency of the greedy heuristic is far

from satisfactory to handle massive updates of social streams.

To process massive updates, River employs our novel SIC

index [8] to dynamically extract the influential elements. As

shown in Figure 2, SIC stores a number of checkpoints

which starts at different timestamps of the sliding window.

Each checkpoint maintains the influential element set for the

corresponding interval, e.g., checkpoint Λta keeps the solution

among social elements contained in the time interval [ta, t−1]
at time t− 1. In this way, the first non-expired checkpoint is

used as the solution for the entire window. There are two steps

for SIC to handle an incoming social element6: (1) A push step
which updates each of the checkpoints with the new element;

(2) A delete step which deletes both the expired checkpoint

and the checkpoints which are unnecessary to store.

Push. Let us picture a sliding window at time t−1 which con-

tains N active social elements7 (Figure 2). Given an incoming

social element et which falls into the user specified region R,

the push step uses et to update each of the checkpoints in

the window. As the checkpoints only need to handle insertion

rather than deletion and our ranking function is monotone

and submodular, we invoke existing append-only streaming

algorithm for submodular optimization to update the influential

element set that corresponds to different starting points. We

note that each checkpoint takes O(log k
ε) ranking function calls

to update and maintains a (12−ε)-approximate solution against

the append-only stream.

Delete. After updating all checkpoints with the new social

element, we first delete the expired checkpoint as the window

5A set function f is monotone iff f(A) ≤ f(B) for any A ⊆ B, and f is
submodular iff f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) for any x �∈ B.

6Note that our processing framework can also handle a batch of updates.
We present the scenario for single element update for simplicity.

7SIC can also handle varying length sliding windows, e.g., the time-based
sliding window which maintains a number of elements in a fixed time interval.

Fig. 3: A comparison of the efficiency of IM methods

Fig. 4: A comparison of the result quality of IM methods

slides (Λt−N in Figure 2). To speed up the processing effi-

ciency, SIC leverages the monotone and submodular property

of the ranking function to delete checkpoints which can be

approximated by nearby checkpoints. In particular, SIC keeps

a sequence s of checkpoints {Λt1 ,Λt2 , . . . ,Λts}. Intuitively,

given any three consecutive checkpoints Λta , Λtb , Λtc kept by

SIC where ta < tb < tc and a parameter ε ∈ (0, 1), as long

as (1− ε)Λta (we also use Λta to denote the utility value of

the solution maintained in Λta) is less than those of Λtb and

Λtc , we delete Λtb as Λtc is (1− ε)-approximate to Λtb .

The pseudo code of the SIC maintenance is presented in

Algorithm 1. We perform the push step in Lines 3-5 and the

delete step in Lines 6-16. Note that the deletion procedure

can be done with only one swipe over the checkpoints in SIC.

After the procedure for SIC maintenance, the result of Λt1 is

always retrieved for the monitoring query at any time. It has

been shown in [8] that only O(logN
ε) checkpoints need to be

maintained. The overall processing complexity of SIC is thus

O(log k·logN
ε2) function calls, which is significantly lower than

the greedy algorithm that requires O(k · N) function calls.

In addition, SIC maintains a (14 − ε)-approximate solution

according to the theoretical result of [8].

We compare our SIC algorithm with two state-of-the-art IM

algorithms: (1) IMM [21] for IM in static social networks; and

(2) UBI [10] for dynamic IM in evolving networks. The results

for efficiency are shown in Figure 3. We can see SIC has

1432

(a) 9 PM, 8th June (the last game of 2018 NBA Finals starts) (b) 12 AM, 9th June (2018 NBA Finals Championship announced)

(c) 4AM, 9th June (4 hours after the game ends) (d) 8PM, 21st June (the 2018 NBA Top Draft Pick announced)

Fig. 5: The last game of NBA Finals between Golden State Warriors (home to Oakland, California, pointed by red arrow)

and Cleveland Cavaliers (home to Cleveland, Ohio, pointed by blue arrow) started at 9PM, 8th June. Phoenix Suns (home to

Phoenix, Arizona, pointed by green arrow) won the NBA Top Draft Pick at 8PM, 21st June. All times are in EDT.

much higher throughputs (i.e., the average number of elements

processed per second) than UBI and IMM. It is able to process

over 30K elements per second when k = 50, which can meet

the requirement for processing real-world social streams. The

results for influence spread (i.e., the average number of users

influenced by the element sets returned by each method) are

illustrated in Figure 4. The quality of the results returned by

SIC is always close to IMM with varying k. The differences

in influence spread are always less than 3%. Conversely, UBI

can only return high-quality results when k is small but its

result quality degrades when k increases.

VI. DEMONSTRATIONS

We will demonstrate River to the conference audiences

using the web interface that we have prototyped. We keep

collecting the incoming tweets via the Twitter Streaming API

over months, and the average incoming rate is about 20 tweets

per second. Among all tweets, about 12% have the fine-

grained geographic information (i.e., GPS coordinates), and

the rest contains coarse-grained geographic information (i.e.,

rectangular bounding boxes). As of the date of publication,

we have collected more than 100 million tweets. We use a

server running Ubuntu 16.04 as the back-end, with four Intel

E7-4820 1.9GHz processors and 128 GB memory.

The conference attendees will be able to experience three

main scenarios with River, namely query processing, interac-
tive influential tweet exploration, and scalability demonstra-
tion. Next, we will present the above scenarios in detail based

on two examples: (i) Trump’s visit to Poland (as shown in

Figure 1) and (ii) 2018 NBA Finals and Draft Pick (as shown

in Figure 5).

Scenario 1: Query Processing. Users can input a set of

keywords, e.g., “Poland” or “NBA”, and River will analyze

the keywords to extract the latent topic interest of the users.

Moreover, River’s interface can support to circle an area in the

map if users wish to constrain the region of the interests, e.g.,

within the United States. After users confirm their query (key-

words and region), the system initializes and starts to stream

1433

in tweets. As shown in Figure 1a, a sliding timeline is placed

on the right of the interface and a set S of k influential tweets

that are relevant to the user’s query are always maintained and

visualized. The collective influence score of S at time t, i.e.,

IRt (S), is presented as a time-series trend chart placed on the

bottom, which shows obvious influence fluctuations in some

important moments. To demonstrate the impact region of S,

a heatmap visualizes degree of the influence impact of S in

different parts of the region.

Scenario 2: Interactive Influential Tweet Exploration.
Users can stop the stream by pushing the “pause” button

and closely examine the influential tweets extracted from the

snapshot. As shown in Figure 1b, user can hover on one of the

influential tweets in the timeline to access its full content and

the influence region of the hovered tweet will be visualized

using a heatmap. The user can also click on one of the

influential tweet to explore in detail. Specifically, we visualize

the retweets/replies triggered by the selected influential tweet

on the map according to their geo-location and user can further

click the retweets/replies on the map to see the full contents.

This demonstration scenario allows the attendees to access the

effectiveness of the extracted influential tweets on the spot.

The attendees can then resume the stream to see the variation

of the monitored influential tweets and impact regions.

Scenario 3: Scalability. We demonstrate the scalability of

River in two ways. First, the attendees can increase the

parameter k to track a larger number of influential tweets.

Second, the attendees can fast forward the Twitter stream

by choosing different timeline shifts (minute/hour/day). With

an increasing timeline shift, every single update contains a

more significant amount of incoming tweets, which stresses

the River processing framework. Other than demonstrating

the efficiency, the attendees can also visualize the influence

fluctuation over a longer period of time with the fast forward

feature. For instance, Figure 5 illustrates the evolving of

influence distribution when “NBA” is chosen as the keyword

and sliding in the timeline around June of 2018. Then, the

influence distributions before, during and after the 2018 NBA

Champion announce are shown in Figures 5a, 5b, and 5c

respectively. Different from Figure 5b in which most areas

have a large influence, Figures 5a and 5c emphasize that

the locations of both teams are more influential, which in-

dicates that the people in these locations pay attention to the

game more continuously during the whole period. The same

phenomenon can be observed in the 2018 NBA Draft Pick

which is illustrated in Figure 5d. Specifically, we can see that

Phoenix is enjoying an unusually large influence as it wins

the first overall pick. To summarize, this example shows that

River enhances the real-time, topic-aware and location-aware

influence monitoring on social media streaming data.

VII. CONCLUSION

In this paper, we introduced our River system that aimed to

provide a real-time monitoring service for influential contents

tracking against high-speed social streams. We presented the

problem context of River and demonstrated its novel features
in a user-friendly interface, powerful processing framework

over a novel index structure, and analysis efficiency. For future

work, we plan to incorporate personalized topical influence in

finding the relevant social contents [22].

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful

comments to improve the paper. Yuchen is supported by the

Singapore MOE Tier 1 grant MSS18C001.

REFERENCES

[1] P. M. Domingos and M. Richardson, “Mining the network value of
customers,” in KDD. ACM, 2001, pp. 57–66.

[2] Y. Li, D. Zhang, and K.-L. Tan, “Real-time targeted influence maximiza-
tion for online advertisements,” Proc. VLDB Endow., vol. 8, no. 10, pp.
1070–1081, 2015.

[3] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen,
and N. S. Glance, “Cost-effective outbreak detection in networks,” in
KDD. ACM, 2007, pp. 420–429.

[4] M. Ye, X. Liu, and W.-C. Lee, “Exploring social influence for recom-
mendation: a generative model approach,” in SIGIR. ACM, 2012, pp.
671–680.

[5] Y. Li, J. Fan, Y. Wang, and K.-L. Tan, “Influence maximization on social
graphs: A survey,” IEEE Trans. Knowl. Data Eng., 2018.

[6] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “Learning influence
probabilities in social networks,” in WSDM. ACM, 2010, pp. 241–250.

[7] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in KDD. ACM, 2003, pp. 137–146.

[8] Y. Wang, Q. Fan, Y. Li, and K.-L. Tan, “Real-time influence maximiza-
tion on dynamic social streams,” Proc. VLDB Endow., vol. 10, no. 7,
pp. 805–816, 2017.

[9] N. Ohsaka, T. Akiba, Y. Yoshida, and K.-i. Kawarabayashi, “Dynamic
influence analysis in evolving networks,” Proc. VLDB Endow., vol. 9,
no. 12, pp. 1077–1088, 2016.

[10] X. Chen, G. Song, X. He, and K. Xie, “On influential nodes tracking
in dynamic social networks,” in SDM. SIAM, 2015, pp. 613–621.

[11] Y. Yang, Z. Wang, J. Pei, and E. Chen, “Tracking influential individuals
in dynamic networks,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 11,
pp. 2615–2628, 2017.

[12] Y. Li, J. Fan, Y. Wang, and K.-L. Tan, “Influence maximization on social
graphs: A survey,” IEEE Trans. Knowl. Data Eng., 2018.

[13] J. Fan, J. Qiu, Y. Li, Q. Meng, D. Zhang, G. Li, K.-L. Tan, and X. Du,
“Octopus: An online topic-aware influence analysis system for social
networks,” in ICDE. IEEE, 2018, pp. 1569–1572.

[14] Y. Wang, Y. Li, J. Fan, and K.-L. Tan, “Location-aware influence
maximization over dynamic social streams,” ACM Trans. Inf. Syst.,
vol. 36, no. 4, p. 43, 2018.

[15] Y. Li, D. Zhang, Z. Lan, and K.-L. Tan, “Context-aware advertisement
recommendation for high-speed social news feeding,” in ICDE. IEEE,
2016, pp. 505–516.

[16] D. Zhang, Y. Li, J. Fan, L. Gao, F. Shen, and H. T. Shen, “Processing
long queries against short text: Top-k advertisement matching in news
stream applications,” ACM Trans. Inf. Syst., vol. 35, no. 3, pp. 28:1–
28:27, 2017.

[17] Y. Li, Z. Bao, G. Li, and K.-L. Tan, “Real time personalized search on
social networks,” in ICDE. IEEE, 2015, pp. 639–650.

[18] K. Subbian, C. C. Aggarwal, and J. Srivastava, “Querying and tracking
influencers in social streams,” in WSDM. ACM, 2016, pp. 493–502.

[19] Y. Wang, Y. Li, and K.-L. Tan, “A sliding-window framework for
representative subset selection,” in ICDE. IEEE, 2018, pp. 1268–1271.

[20] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions - I,” Math.
Program., vol. 14, no. 1, pp. 265–294, 1978.

[21] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in SIGMOD. ACM, 2015, pp. 1539–
1554.

[22] Y. Li, J. Fan, D. Zhang, and K.-L. Tan, “Discovering your selling points:
Personalized social influential tags exploration,” in SIGMOD. ACM,
2017, pp. 619–634.

1434

